
connect • communicate • collaborate

REST architecture for

perfSONAR

Authentication model

Nina Jeliazkova (BREN)

Candido Montes (RedIris)

connect • communicate • collaborate

2

RESTful perfSONAR

Investigation of REST architecture for web

services and its applicability to perfSONAR

web services (Jan 2010)

• REST principles

• Mapping of existing perfSONAR schemas

• Authentication model

• Performance measurement

connect • communicate • collaborate

3

REpresentational State

Transfer (REST)

• Architectural style for distributed information systems on the Web

• Simple interfaces, data transfer via hypertext transfer protocol

(HTTP), stateless client/server protocol

• GET, POST, PUT, DELETE

• Each resource is addressed by its own web address

• Lightweight approach to web services

• Simplifies/enables development of distributed and local

systems

• SOAP vs REST

• SOAP is a protocol , REST is an architectural style, not a protocol.

• SOAP: established WS‐SOAP standards,

• REST: Currently NO standards for RESTful applications, but

merely design guides.

connect • communicate • collaborate

4

REST design guide

Resource oriented

Every object (resource) is named and addressable (e.g. HTTP URL)

Example: http://perfsonarservice.net/MeasurementArchive/interface/interface_identifier

Transport protocol

HTTP is the most popular choice of transport protocol, but there are examples of systems using other

protocols as well.

Operations

Resources (nouns) support limited number of operations (verbs). HTTP operations are the common

choice, when the transport protocol is HTTP.

RESTful operations

GET (retrieve the object under specified URL)

PUT (update the content of an object at the specified URL)

POST (create a new object and return the URL of the newly created resource)

DELETE (delete the object)

All operations, except POST should be safe (no side effects) and idempotent (same effect if executed

multiple times).

Non-RESTful operations

Everything else , e.g. POST XML message to http://perfsonarservice.net/MAservice

Resource representation (Media types)

Hypermedia as the Engine of Application State (hyperlinks!)

http://perfsonarservice.net/MeasurementArchive/interface/interface_identifier
http://perfsonarservice.net/MAservice

connect • communicate • collaborate

5

perfSONAR REST resources

1)Service: URL: http://servicehostname:port/servicename/

Representation: text/xml

Operations:

• GET ‐ return metadata of the service itself

• PUT ‐ input: XML with service metadata ; output: adds service metadata

• POST ‐ input: XML with service metadata ; output: replaces service metadata

• DELETE ‐ remove service metadata

2)Topology elements URL:

http://servicehostname:port/servicename/topologyelements?paramName=valu

e¶mName=value1¶mName1=value2

Representation: text/xml

Operations:
GET Returns NMWG representation of topology elements (response of the NMWG

MetadataKeyRequest)

PUT

POST Create new topology element(s) by sending representation in NMWGT XML

DELETE Delete all topology elements

Parameters : parameters and values as in NMWG/NMWGT

connect • communicate • collaborate

6

perfSONAR REST resources

3) Topology elements of specific type (Metadata)

SOAP request: MetadataKeyRequest

URL (REST request):

http://servicehostname:port/servicename/topologyelements/{type‐of‐topologyelement}/

metadata?parameterName=value

Representation: NMWG XML , content type text/xml or to be defined

Operations:

• GET, PUT, POST, DELETE

4) Topology elements of specific type (Data)

SOAP request: SetupDataRequest

URL (REST request):

http://servicehostname:port/servicename/topologyelements/{type‐of‐topologyelement}/me

tadata?parameterName=value

Representation: NMWG XML , content type text/xml or to be defined

Operations:

• GET, PUT, POST, DELETE

connect • communicate • collaborate

7

perfSONAR REST resources

5) A single topology element

URL:

http://servicehostname:port/servicename/topologyelements/{type‐of‐topology‐eleme

nt}/{idof‐the‐topology‐element}

Representation: text/xml

Operations:

• GET Retrieve metadata of the topology element

• PUT Add metadata of the topology element input: NMWGT XML

• POST Replace metadata of the topology element input: NMWGT XML

• DELETE Delete topology element

Examples:

• GET http://servicehostname:port/servicename/topologyelements/interface/1
<nmwgt:interface>

<nmwgt:hostname>myhostname</nmwgt:hostname>

<nmwgt:ifName>myifname</nmwgt:ifName>

<nmwgt:ifDescription>My Interface</nmwgt:ifDescription>

<nmwgt:ifAddress>10.0.0.1</nmwgt:ifAddress>

<nmwgt:ifIndex>eth0</nmwgt:ifIndex>

<nmwgt:direction>in</nmwgt:direction>

<nmwgt:capacity>100000000</nmwgt:capacity>

</nmwgt:interface>

http://servicehostname:port/servicename/topologyelements/interface/1

8

Performance comparison

connect • communicate • collaborate

9

SOAP Authentication model

The authentication of the official perfSONAR

is based on

• Web Services Security (SOAP 1.1)

• X.509 digital certificate profile

• SAML profile in order in to include the

security tokens defined in its architecture.

connect • communicate • collaborate

10

REST Authentication model

There is no defined standard for protecting RESTful

web services.

There is a draft, HTTP Authentication: Token Access

Authentication (http://tools.ietf.org/html/draft-hammer-

http-token-auth-00)which can be used in to include

the security tokens in every request.

• Originally created to propose a better solution for

OAuth;

• Quite generic and it can be used for other kind of

tokens.

http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00
http://tools.ietf.org/html/draft-hammer-http-token-auth-00

connect • communicate • collaborate

11

HTTP Request without token

returns the following authentication

challenge:

realm:

coverage: the list of authentication

coverage names supported by the

server.

timestamp: this is used by the server

to publish its current time, enabling

clients to synchronize their close with

the server.

class: the list of token types

supported by the server.

method: the list of authentication

method names supported by the

server, provided as a space-delimited

list.

HTTP / 1.1 401 Unauthorized

WWW-Authenticate: Token

realm="http://example.com/",

coverage="base base+body-sha-

256",

timestamp="137131190",

class="x509v1 x509v3 saml20-

base64”

GET /resource HTTP / 1.1

Host: example.com

http://example.com/

connect • communicate • collaborate

12

HTTP Request with token

token: the value used to represent the security

token.

coverage: sets the name of the authentication

coverage method used by the client to make the

request. (See section 5.2 of the draft).

nonce: contains a random string as the draft

specifies.

timestamp: contains the timestamp of the

user's client.

auth: the output of the authentication method

function after applying it to the selected

coverage as described in draft Section 7).

class: sets the name of the token type used by

the client to make the request.

method: the name of the authentication method

used by the client to make the request. (See

Section 7 of the draft).

GET /resource HTTP / 1.1

Host: example.com

Authorization: Token

token="h480djs93hd8...yZT4=",

coverage="base",

nonce="dj83hs9s",

timestamp="137134190",

auth="djosJKDKJSD8743243/jdk3

3klY=",

class="x509v3",

method="rsassa-pkcs1-v1.5-

sha-256"

connect • communicate • collaborate

13

Profile based on X.509 digital

certificates

This profiles define how a token based on a X.509 digital

certificate should be sent. The requirements are:

Token types: the following tokens are defined for this profile:

Token value: the token value is represented using the base

64 codification of the DER value of the certificate.

Authentication method: Use of rsassa-pkcs1-v1.5-sha-256 for

calculating the auth parameter using the private key of the

certificate.

Class name Token type

x509v3 An X.509 v3 certificate capable of signature-verification at a

minimum.

x509v1 An X.509 v1 certificate capable of signature-verification at a

minimum.

connect • communicate • collaborate

14

Profile based on X.509 digital

certificates

token: the DER value of the X.509 digital

certificate in base64.

coverage: sets the name of the

authentication coverage method used by the

client to make the request.

nonce: contains a random string as the draft

specifies.

timestamp: contains the timestamp of the

user's client.

auth: the output of the rsassa-pkcs1-v1.5-

sha-256 method function.

class: the token type as described in the

previous table.

method: the authentication method used by

the client, which MUST be "rsassa-pkcs1-

v1.5-sha-256".

GET /resource HTTP / 1.1

Host: example.com

Authorization: Token

token="h480djs93hd8...yZT4=",

coverage="base",

nonce="dj83hs9s",

timestamp="137134190",

auth="djosJKDKJSD8743243/jdk3

3klY=",

class="x509v3",

method="rsassa-pkcs1-v1.5-sha-
256"

connect • communicate • collaborate

15

Profile based on SAML

assertions

This profiles define how a token based on a SAML

assertion should be sent.

There are different confirmation methods:

• Bearer

• Holder-of-Key

• Sender-vouches

connect • communicate • collaborate

16

SAML
Bearer Confirmation Method

token: the SAML assertion in base64.

coverage: sets the name of the

authentication coverage method used by the

client to make the request.

class: the token type for the SAML Assertion

base on the second version of that

technology.

method: the authentication method used by

the client.

GET /resource HTTP / 1.1 Host:

example.com Authorization:

Token

token="h480djs93hd8...yZT4=",

coverage="none",

class="saml20-base64",
method="none"

The requirements are:

Token types: it MUST be the value

"saml20-base64" or "saml11-

base64".

Token value: the token value is

represented using the base 64

codification of the SAML assertion.

Authentication method: any

authentication method can be used

but in case the 'none' method is not

used the selected key and its

transmission is out of scope of this

document.

connect • communicate • collaborate

17

SAML
Bearer Confirmation Method

token: the SAML assertion in base64.

coverage: sets the name of the

authentication coverage method used by the

client to make the request.

class: the token type for the SAML Assertion

base on the second version of that

technology.

method: the authentication method used by

the client.

GET /resource HTTP / 1.1

Host: example.com

Authorization: Token

token="h480djs93hd8...yZT4=",

coverage="none",

class="saml20-base64",

method="none"

The requirements are:

Token types: it MUST be the value

"saml20-base64" or "saml11-

base64".

Token value: the token value is

represented using the base 64

codification of the SAML assertion.

Authentication method: any

authentication method can be used

but in case the 'none' method is not

used the selected key and its

transmission is out of scope of this

document.

connect • communicate • collaborate

18

SAML
Holder-of-Key Confirmation Method

token: the SAML assertion in base64.

coverage: sets the name of the authentication coverage method

used by the client to make the request.

nonce: contains a random string as the draft specifies.

timestamp: contains the timestamp of the user's client.

auth: the output of the rsassa-pkcs1-v1.5-sha-256 method

function.

class: the token type for the SAML Assertion base on the second

version of that technology.

method: the authentication method used by the client, which

MUST be "rsassa-pkcs1-v1.5-sha-256".

GET /resource HTTP / 1.1

Host: example.com

Authorization: Token

token="h480djs93hd8...yZT4=",

coverage="base", nonce="dj83hs9s",

timestamp="137134190",

auth="djosJKDKJSD8743243/jdk33klY=",

class="saml20-base64",

method="rsassa-pkcs1-v1.5-sha-256"

The requirements are:

Token types: it MUST be the value

"saml20-base64" or "saml11-

base64".

Token value: the token value is

represented using the base 64

codification of the SAML assertion.

Authentication method: Use of

rsassa-pkcs1-v1.5-sha-256 for

calculating the auth parameter

using the private key which has

generated the public key included in

the <SubjectConfirmation> element.

connect • communicate • collaborate

19

SAML
Sender-Vouches Confirmation Method

token: the SAML assertion in base64.

coverage: sets the name of the authentication coverage method

used by the client to make the request.

nonce: contains a random string as the draft specifies.

timestamp: contains the timestamp of the user's client.

auth: the output of the rsassa-pkcs1-v1.5-sha-256 method

function.

class: the token type for the SAML Assertion base on the second

version of that technology.

method: the authentication method used by the client, which

MUST be "rsassa-pkcs1-v1.5-sha-256".

GET /resource HTTP / 1.1

Host: example.com

Authorization: Token

token="h480djs93hd8...yZT4=",

coverage="base", nonce="dj83hs9s",

timestamp="137134190",

auth="djosJKDKJSD8743243/jdk33klY=",

class="saml20-base64", method="rsassa-

pkcs1-v1.5-sha-256"

The requirements are:

Token types: it MUST be the value

"saml20-base64" or "saml11-

base64".

Token value: the token value is

represented using the base 64

codification of the SAML assertion.

Authentication method: Use of

rsassa-pkcs1-v1.5-sha-256 for

calculating the auth parameter

using the private key which has

signed the SAML assertion.

connect • communicate • collaborate

20

AA for REST services
RFC draft preparation

•Diego Lopez

•Elena Lozano

•Candido Rodriguez

•Klaas Wierenga

•Nina Jeliazkova

21

Thank you!

