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Chemical category is a regulatory concept facilitating filling safety data gaps. Practically, all
chemical management programs like the OECD HPV Program, EU REACH, or the Canadian
DSL Categorization are planning to use or are already using categorization approaches to
reduce resources including animal testing. The aim of the study was to discuss the feasibility to
apply computational structural similarity methods to augment formation of a category.
The article discusses also how this understanding can be translated into computer readable
format, an ultimate need for practical, broad scope applications. We conclude that for the skin
sensitization endpoint, used as a working example, mechanistic understanding expressed as
chemical reactivity can be exploited by computational structural similarity methods to augment
category formation process. We propose a novel method, atom environments ranking (AER),
to assess similarity to a reference training set representing a common mechanism of action,
as a potential method for grouping chemicals into reactivity domains.

Keywords: Category formation; Similarity assessment; Mechanism of action; Atom
environments; Skin sensitization

1. Introduction

A number of chemical categories have already been successfully assessed within the
OECD HPV program and more are in preparation [1]. Practically, all chemical
management programs including EU REACH and Canadian DSL Categorization are
planning to apply categorization approaches to use resources more efficiently and
reduce animal testing when filling in data gaps. This is potentially a big gain for the
industry. The current definitions of category allow for a variety of approaches for its
formation. Specifically, in the OECD Manual for Investigation of HPV Chemicals
Chapter 3, section 2 we read: ‘A chemical category is a group of chemicals whose
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physicochemical and toxicological properties are likely to be similar or follow a regular
pattern as a result of structural similarity, these structural similarities may create a
predictable pattern in any or all of the following parameters: physicochemical properties,
environmental fate and environmental effects, and human health effects.’ Similar
definitions can be found in Annex IX of REACH guidance documents: ‘Substances
for which physicochemical, toxicological and ecotoxicological properties are likely to be
similar or follow a regular pattern as a result of structural similarity may be considered as
a group, or ‘‘category’’ of substances’.

According to the OECD manual for investigation of HPV chemicals (manual
currently in revision by OECD Existing Chemicals Task Force) the rationales for a
category include: a common functional group (e.g., aldehyde, epoxide, ester, metal ion),
an incremental and constant change across the category (e.g., a chain-length category),
the likelihood of common precursors and/or breakdown products via physical or
biological processes which result in structurally similar chemicals (‘‘metabolic pathway
approach’’) and, explored to a lesser extent, common mechanism of action.

In specific cases, constitution of a category can be complicated and boundaries of
a category are not straightforward. To improve sharing experience, and to build
confidence and consensus among various stakeholders, an OECD workshop on
forming categories was held in Brussels in January, 2004 [2]. Several case studies were
presented with a focus on key issues related to formation of a category. Fragment
similarity was identified as the leading approach used. Workshop participants
recommended the development of other approaches to improve scientific basis of a
category such as dividing category into subcategories according to properties and
endpoints, relating observed properties to an underlying theory (mechanism of action)
to increase confidence in category and, if justified, allowing for extrapolation, and
exploring the use of computational chemistry/QSARs for the category justification,
specifically to help to formalize categories and its boundaries. It was also noted when
establishing trends within a category, that there is a need to consider underlying
variability in experimental data and that it is easier to identify outliers if the category
contains many substances with data. Thus, developing approaches allowing large
categories was recommended, if possible.

In this article we attempt to address these recommendations by exploring
the feasibility to use computational structural similarity to group chemicals into
reactivity domains to augment formation of a category. Until now, assessment
of reactivity domain required human expert decision and reference sets for different
reactivity domains were constructed manually for skin sensitizers [3]. We propose a
novel method to convert reference sets derived with expert knowledge into computer
readable format and use structural similarity methods to assess similarity of a new
chemical to a particular reference set or reactivity domain. Ability to capture expert
knowledge into computer readable format is critical for practical broad scale
applications. In addition it adds transparency to the process. As a working example,
we discuss the skin sensitization endpoint.

1.1 Current use of structural similarity concepts in toxicology

Since the definitions of category frequently mention structural similarity, our intention
was to explore a well-developed field in computational chemistry, structural similarity
assessments for its application to forming categories. The objective of assessing
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chemical similarity in toxicology is to automatically determine the chemicals with
similar biological activities. It is based on the hypothesis that similar compounds have

similar biological activities. The hypothesis has numerous supportive, but also many

contradictory examples, since there are cases where a small change in chemical structure

leads to a drastic change in the biochemical activity (‘similarity paradox’) [4, 5]. Recall

from philosophy that similarity is not an absolute concept, but a relative one, and
this has important consequences to the precise definition of chemical similarity. Thus,

as two objects cannot be similar in absolute terms, but only with respect to a property of

the object, two chemicals cannot be similar per se, but only with respect to some

measurable key feature [6, 7]. The above mentioned ‘similarity paradox’ suggests that

there exists no single universally appropriate similarity measure, but rather its choice
depends on the particular endpoint.

The idea of customizing similarity measures to specific activities is becoming

increasingly accepted. Rosenkranz and Cunningham demonstrated that traditional

organic chemical classes are not able to separate chemicals into toxic and non-toxic

groups [8]. Others make use of various supervised learning techniques in order to select

the relevant chemical representations and classify toxicity classes [9, 10]. Genetic
algorithm was employed [9] to derive weights for the edit distance that is used as a

similarity measure between reduced graph representations of chemical structures. When

the algorithm is trained on multiple activity classes, different similarity measures with

respect to the activity are obtained. Basak presents a comparison of property-based,

arbitrary, and ‘tailored’ similarity spaces [10]. ‘Tailored’ space is a space comprising of
properly selected descriptors, in this case via ridge regression, and is reported to be

superior to the arbitrary similarity methods in logKow estimation [11]. Another example

of ‘‘tailored’’ similarity, this time structural, is the method for extracting toxicity

indicating structural patterns based on fragment frequency [12].
An approach regaining attention recently and one that could be used for ‘‘tailoring’’

structural similarity to the endpoint is one based on mechanism of action. This

development is interesting for potential applications in category formation because

it would allow formulating a toxicological hypothesis, a possibility to group initially

larger number of chemicals, use more available data and overall provide higher

reliability for a category. Research regarding how precisely a mechanism of action
needs to be defined for computerized application is ongoing and the chemical reactivity

basis, type of interactions with proteins, -omics data are among many possibilities.

2. Methods

2.1 The skin sensitization data

The data set used for the analysis is the local lymph node assay (LLNA) data set

consisting of 211 chemicals [13]. These chemicals were rated based on their EC3%
potency into 5 classes: non-sensitizers and weak, moderate, strong and extreme

sensitizers. Of these, Aptula et al. [3] analyzed a subset of 41 compounds to derive

reaction mechanistic applicability domains for structure-activity relationships. Based on

expert knowledge, they grouped chemicals according to chemical reactivity and defined

5 reactivity domains: Michael acceptors (MA), Schiff base formers (SCH), acylating

Structural similarity analysis 197
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agents (Acyl), SN2 electrophiles (SN2) and no evident reactivity mechanism (DIV).
The chemicals assigned to each group are listed in table 1.

Until now, efforts to analyze the LLNA data set were focused on developing binary
classification models to separate non-sensitizers from sensitizing chemicals [14, 15].
Li et al. [14] developed a binary classification model for differentiating strong sensitizers
versus non-sensitizers using a random forest modeling approach and GETAWAY
descriptors, while Devillers [15] developed a neural network with Kow, one topological
index and 12 structural alerts to separate non-sensitizers from all other sensitizer
classes. Both models achieved high predictivity of 80% [14] and 83–94% [15] in the
internal validation. Since contacts allergens vary substantially with regard to the
relative potency with which they are able to induce skin sensitization there is a growing
consensus that consideration of potency will become a significant factor in the
classification of skin sensitizers [16] and as a precedent a weak sensitizers was accepted
in a detergent [17]. To meet these needs, Dimitrov et al. [18] proposed separating
chemicals into non-, weak and strong sensitizers (the last group included moderate,
strong and extreme sensitizers) into a model TIMES. The authors used a complex
methodology, including skin metabolism simulator, conformational analysis, pattern
recognition and 3D QSAR using physicochemical, steric, and electronic parameters.
However, such a complex procedure, based on mechanistic rationale, still does not
provide much better results compared [14, 15] yielding correct predictions for 70% non-
sensitizers, 20–40% for weak sensitizers, and 80% for other sensitizers (moderate,
strong and extreme). In our analyses we will attempt to explain these results by studying
chemical structures of the LLNA set [13].

2.2 Structural similarity methods used in the study

The variety of numerical representations (graphs, descriptors, wave function, etc.) of
molecular structure and ways to define a comparative measure between them resulted in
several approaches to measure similarity between chemical compounds. In this study,
we used Daylight-like fingerprints combined with Tanimoto coefficient (DFT), Atom
Environments combined with Tanimoto (AET) and Atom Environments Ranking
based on random walk theory (AER). The details of each approach are described
below.

2.2.1 Daylight-like fingerprints combined with Tanimoto. Fingerprint generation was
based on the fingerprint implementation by open source cheminformatics library, The
Chemistry Development Kit (CDK), [19] and follows the ideas of Daylight fingerprint
theory [20] that states: (1) for a given molecule all possible paths for a predefined length
(default is 7) are generated, (2) the path is submitted to a hash function which uses it
as a seed to a pseudo-random generator, (3) the hash function outputs a set of bits, and
(4) the set of bits thus produced is added (with a logical OR) to the fingerprint. We use
1024 bit fingerprints in this study. The Tanimoto coefficient is calculated as
Tanimoto¼NA\NB/(NAþNB�NA\NB), where NA is the number of bits ‘‘on’’
in fingerprint A, NB is the number of bits ‘‘on’’ in fingerprint B and NA\NB is
the number of bits ‘‘on’’ in both fingerprints. Since Tanimoto distance is a pair-wise
measure, and here the objective is to assess the similarity to the set of molecules, we
generate a consensus fingerprint, which is again 1024 bit fingerprint where each bit is set

198 J. Jaworska and N. Nikolova-Jeliazkova
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Table 1. Chemicals assigned to the flowing reactivity domains Michael Acceptors (a), SN2 electrophiles (b),
Schiff base formers (c), Acylating agents (d) and chemicals without specific reactivity profile (e) based on [12]

(total n¼ 41) and personal communication with A. Aptula (n¼ 4).

CAS SMILES Name

(a) Michael acceptors (MA) n¼ 12
106-51-4 O¼C1C¼CC(¼O)C¼C1 1,4-Benzoquinone
123-31-9 Oc1ccc(O)cc1 Hydroquinone
106-50-3 Nc1ccc(N)cc1 Phenylene diamine
1166-52-5 CCCCCCCCCCCCOC(¼O)c1cc(O)c(O)c(O)c1 Lauryl gallate
97-54-1 CC¼Cc1ccc(O)c(OC)c1 Isoeugenol
104-55-2 O¼CC¼Cc1ccccc1 Cinnamic aldehyde
122-57-6 O¼C(C¼Cc1ccccc1)C Benzylidene acetone
101-86-0 CCCCCCC(C¼O)¼Cc1ccccc1 Hexyl vinnamic aldehyde
104-27-8 CCC(¼O)C¼Cc1ccc(OC)cc1 1-p-Methoxyphenyl-1-penten-3-one
923-26-2 OC(C)COC(¼O)C(¼C)C 2-Hydroxypropyl methaacrylate
92-48-8 Cc1ccc2OC(¼O)C¼Cc2(c1) 6-Methyl coumarin
97-00-7 O¼N(¼O)C1CCC(Cl)C(C1)N(¼O)¼O 1-Chloro-2,4-dinitrobenzene

(b) SN2 electrophiles (SN2) n¼ 7
3508-00-7 CCCCCCCCCCCCCCCCCBr 1-Bromoheptadecane
112-82-3 CCCCCCCCCCCCCCCCBr 1-Bromohexadecane
111-25-1 CCCCCCBr 1-Bromopentane
55965-84-9 O¼C1N(C)SC(Cl)¼C1 Methylisothiazoline
57-57-8 O¼C1OCC1 beta-Propiolactone
629-62-9 CCCCCCCCCCCCCCCBr 1-Bromopentadecane
109-65-9 BrCCCC 1-Bromobutane

(c) Schiff base formers (SCH)¼ 7
111-30-8 O¼CCCCC¼O Glutaraldehyde
50-00-0 O¼C Formaldehyde
122-78-1 O¼CCc1ccccc1 Phenyacetaldehyde
80-54-6 O¼CC(C)Cc1ccc(cc1)C(C)(C)C Lilial
103-95-7 O¼CC(C)Cc1ccc(cc1)CCC Cyclamen aldehyde
107-75-5 O¼CCC(C)CCCC(O)(C)C Hydroxycitronellal
13706-86-0 O¼C(C(¼O)CC(C)C)C 5-Methyl-2,3-hexanedione

(d) Acylating agents (Acyl) n¼ 5
15646-46-5 c1ccc(C2¼NC(¼COCC)C(¼O)O2)cc1 Oxazolone
119-84-6 O¼C2Oc1ccccc1CC2 3-Propelidenephtalide
112-67-4 ClC(¼O)CCCCCCCCCCCCCCC 3,4-Dihydrocoumarin
93-99-2 O¼C(Oc1ccccc1)c2ccccc2 Propylidene phthalide
17369-59-4 O¼C1OC(¼CCC)c2ccccc12 Phenyl benzoate

(e) Chemicals without specific reactivity profile (DIV) n¼ 12
109-55-7 NCCCN(C)C 3-Dimethylaminopropylamine
591-27-5 Nc1cccc(O)c1 3-Aminophenol
97-53-0 C¼CCc1ccc(O)c(OC)c1

O¼C(O)C2(C)(CCCC3(C)(C1C(C¼C
Eugenol

514-10-3 (CC1)C(C)C)¼CCC23) Abietic acid
78-70-6 OC(C¼C)(C)CCC¼C(C)C

O¼C(Cc1ccccc1)NC3C(¼O)N2C3(S
Linalool

61-33-6 C(C)(C)C2(C(O)¼O)) Penicillin G
108-90-7 Clc1ccccc1 Chlorobenzene
1459-93-4 O¼C(OC)c1cccc(c1)C(¼O)OC Dimethylisophtalate
56-81-5 OCC(O)CO Glycerol
110-54-3 CCCCCC Hexane
99-96-7 O¼C(O)c1ccc(O)cc1 1,4-Dihydrobenzoic acid
67-63-0 OC(C)C 2-Propanol
50-21-5 CC(O)C(O)¼O Lactic acid
119-36-8 O¼C(OC)c1ccccc1(O) Methyl salicylate

Structural similarity analysis 199
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if at least one percent of the compounds in the dataset has a bit set. Then, the Tanimoto
distance is calculated between a queried compound and the consensus fingerprint.

2.2.2 Atom environments with k-nearest neighbor (k-nn) and Tanimoto. Atom
Environments (AE) [21, 22] can be regarded as fragments, surrounding each atom in
a molecule, up to a predefined level. The calculation procedure is as follows. First, atom
types to be included in the generation of AEs are selected.

We use 34 atom types, listed in table 2, which are very similar to Sybyl atom types
that have been recommended in Bender et al. [22]. The choice is based on the available
atom type parameterization in CDK library. Next, a vector of length (34 �Lþ 1) is
constructed for each atom, where L is the maximum level for generating atom
environments and L¼ 3 by default. Third, for each atom, neighbors at level 1, 2, 3 are
identified and corresponding counts stored in the vector. An example of a string
representation of the result for a single atom (C.sp2) is:

C.sp2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

Note that if there are several C.sp2 atoms with the same neighbors up to 3rd level in
the molecule, they will have the same string representation. We will refer to this
representation as a ‘‘fragment’’. AEs could be compared by Tanimoto distance
(see above), where NA is the number of fragments in molecule A, NB is the number of
fragments in molecule B and NA\NB is the number of common fragments between the
two molecules. Here, we take average Tanimoto distance for the nearest neighbors,
instead of defining consensus fingerprint. For each molecule, the similarity measure is
the averaged Tanimoto distance between the molecule and its 5 nearest molecules.

2.2.3 Atom environment ranking (AER). First Atom Environments are extracted for
each molecule in the reference set. The novel approach is to represent the reference set
not as sum of independent molecules, but as a set of weighted molecules and fragments
to represent their importance and connectivity within the set. The weights are derived
using random walk theory. Our idea of AER method is inspired by the success of Link
Analysis Ranking methods, which are underlying current Web search engines, most
notably Google. There are a vast number of references following the 1998 seminal

Table 2. Atom types used to generate AEs as provided by CDK [19].

H N P3 F
Hplus N.sp2 P4 F–
Hminus Nplus S2 Cl
C.sp3 Nplus.sp3 S2– Cl–
C.sp2 O.sp2 S4 Br
C.sp O.sp3 S Br–
C.default Oplus I
Cplus.sp2 Ominus I–
Cminus.sp2 Misc
Caromatic.sp2
Cminus

200 J. Jaworska and N. Nikolova-Jeliazkova
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papers by Kleinberg [23] and Brin and Page [24]. In Link Analysis Ranking, linked
structures are used to determine the relative importance of a Web page and rank Web

search results. The Google ranking algorithm (PAGERANK) [25] is usually interpreted
as performing a random walk that simulates the behavior of a ‘‘random surfer’’. The

surfer starts from some node chosen according to some distribution D (usually assumed
to be the uniform distribution). At each step, the surfer proceeds as follows: with
probability 1� ", one of the hyperlinks on the current page is picked uniformly at

random, and the surfer moves to a new page, and with probability ", the surfer jumps to
a random page chosen according to distribution D. The ‘‘jump probability’’ " is a

parameter of the algorithm. In our work we used recommended as default "¼ 0.85.
The weight of node i is the fraction of time that the surfer spends at node i. That is, it is

proportional to the number of visits to node i during the random walk (i.e., visit rate).
Random walks are Markov processes which are extensively studied [26]. For

ergodic Markov processes, there are unique long-term visit rates for every state,
known as stationary or steady-state probabilities that are independent of the starting

state of the process. This means that the node weights depend only on how the
nodes are linked and algorithms exist to find the unique weighting, or ranking, for each

set of nodes.
The innovative idea is to represent the relationship between molecules and fragments

by a Markov process. The process starts from a molecule, picks a fragment with
probability 1� " and then selects another molecule containing this fragment or jumps

to a completely different molecule from the set and repeats the walk again. The weight
of a molecule and of a fragment is proportional to the number of visits. Fragments with

higher weights could be considered more important, and correspondingly, the molecule
with a higher weight will be a better representative of the set. According to the Markov

chain theory, the iterative procedure converges and we use the obtained weights to
order molecules and fragments by their importance. Note that in this case we do not

calculate pair-wise similarities, but similarity of each molecule to the entire set of
molecules. Therefore, there is no need to invent ‘‘consensus’’ fingerprints or make

arbitrary decisions about the number of nearest neighbors.
To obtain the weight of a query molecule, its atom environments (i.e., fragments)

should be generated and then the weight is calculated according to the first formula
above. The molecule is considered similar to the training set if its weight is equal or

higher to the smallest weight of the molecule from the training set. Since the weights
come from a steady state probability distribution, generated during an optimization

process, the weight can be interpreted as probability that a chemical is similar to a set.

2.3 Analyses

To explore whether structural similarity is equivalent to biological activity,

i.e. similarity in activity, we compared the structural similarity of extreme, strong,
moderate and weak sensitizers and non-sensitizers from the LLNA set [13]. Next, to

explore if there is structural similarity in the chemicals acting via a common mechanism,
and dissimilarity between chemicals acting via different mechanisms, we compared

structural similarity between chemicals in different reactivity domains as defined by
Aptula et al. [3]. We also compared the performance of different structural similarity

methods to recommend a specific method for practical application.

Structural similarity analysis 201
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3. Results

The results are presented in tables 3 and 4. The tables report percent of compounds
from each potency class (rows) found similar to the given potency class (column). The
ideal similarity measure should yield 100% only on diagonals (the set is similar to itself)
and zeroes everywhere else. Nonzero off-diagonal entries could be interpreted as error
rates.

Table 3(a) presents results from similarity assessment by Daylight-like fingerprints
and Tanimoto distance to a consensus fingerprint derived for each potency class.
The non-sensitizers (NS) column provides a measure of how many compounds are
found similar to non-sensitizers. Obviously, non-sensitizers are similar to themselves
(100% at NS–NS cell), but so are weak (98% at W–NS cell) and moderate (100% at
M–NS cell) sensitizers. Half of the strong sensitizers (50% at S–NS cell) are found
similar to non-sensitizers, and surprisingly, 84% of extreme sensitizers are found similar
to non-sensitizers. Similarly, bad performance is observed when comparing to the
rest of potency classes, highlighting the lack of discriminating power of this
method. It is important to note that comparing non-sensitizers to extreme sensitizers
(row NS – column E) is not the same as comparing extreme sensitizers to non-sensitizers
(row E – column NS), since the procedure involves comparison to a different reference
set. Namely, the consensus fingerprints for NS and E based on [13] are different thus
the comparisons are not symmetric.

The atom environments combined with averaged Tanimoto distance (AET) perform
better table 3(b). They are able to correctly discriminate extreme sensitizers as
no compounds from other groups are predicted to be similar to extreme
sensitizers. However, there is a considerable structural similarity between
compounds from all groups when compared particularly to weak and moderate

Table 3. Performance of (a) DFT, (b) AET, (c) AER methods, expressed as% of
compounds similar to the potency classes: nonsensitizers (NS), weak (W), moderate (M),

strong (S), extreme (E) from set in [13].

% NS W M S E

(a) DFT
NS 100 93 100 100 81
W 98 100 100 100 88
M 100 97 100 100 96
S 50 95 95 100 90
E 84 85 100 100 100

(b) AET
NS 100 36 45 10 0
W 33 100 57 29 0
M 29 52 100 19 0
S 15 20 25 100 0
E 8 8 23 0 100

(c) AER
NS 100 26 12 0 0
W 23 100 22 2 0
M 15 19 100 3 0
S 5 5 10 100 0
E 0 0 0 0 100

202 J. Jaworska and N. Nikolova-Jeliazkova
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sensitizers (columns W and M). There is an observable trend of decreasing similarity

with groups with more dissimilar potencies (e.g., column NS – 33% of weak sensitizers

are predicted to be similar to NS, but only 15% strong sensitizers are predicted to

be similar to NS). The same trends, more defined but still with non-zero error rates

(12–26%), are obtained by Atom environment ranking (table 3c).
Clearly, in the data set [13] there is a high structural similarity between

non-sensitizers and weak and moderate sensitizers. However, there is a trend

indicating that increasing differences in potency correlate with decreasing structural

similarity. The clarity of the trend highly depends on the similarity method used.

Data in table 3 support the general opinion that similarity in activity is not

equivalent to structural similarity. This finding can, in part, explain why other

studies failed to develop predictive models using the LLNA data set [13] reliably

differentiating between non-sensitizers and weak and moderate sensitizers. Another

possible reason is noisy data in this activity range that could be potentially reduced

by a larger dataset.
Next, we analyzed structural similarity between reactivity domains – Michael

Acceptors (MA), SN2 electrophiles (SN2), Schiff base formers (SCH), Acylating

agents (Acyl) and chemicals without specific reactivity profile (DIV) defined by Aptula

et al. [3].
Separation by structural similarity between reactivity domains worked much better

(table 4) than separation between potency classes (table 3). Similar to the previous

analysis, a remarkable difference in performance was observed between different

methods with AER yielding lowest errors (0–7% errors), AET in the middle (0–20%

error) and DFT yielding an unacceptable error of 0–100%.

Table 4. Performance of (a) DFT, (b) AET, (c) AER methods, expressed as% of compounds,
to assess similarity between different reactivity domains Michael Acceptors (MA), SN2

electrophiles (SN2), Schiff base formers (SCH), Acylating agents (Acyl) and chemicals without
specific reactivity profile (DIV) based on grouping provided in [3].

% SN2 SCH Acyl MA DIV

(a)
SN2 100 100 0 14 86
SCH 14 100 0 57 86
Acyl 20 100 100 100 100
MA 17 100 43 100 100
DIV 7 100 28 57 100

(b)
SN2 100 0 0 0 0
SCH 0 100 0 0 0
Acyl 20 0 100 0 0
MA 8 0 0 100 0
DIV 0 0 0 0 100

(c)
SN2 100 0 0 0 0
SCH 0 100 0 0 0
acyl 0 0 100 0 0
MA 0 0 0 100 0
DIV 7 0 7 7 100
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4. Discussion

In the above analyses we demonstrated that grouping chemicals by mechanism of action
within a given endpoint using computational structural similarity methods is feasible.
Attention needs to be paid to the choice of a particular similarity method as different
method yield differing results. We also demonstrated that we can directly capture expert
knowledge, represented as a reference set into computer readable language, to screen
quickly a large number of chemicals. Atom Environments Ranking performed best
as assessed by the lowest error rates. Next was AET, and the worst performance was
recorded for DFT. While our evidence is limited to one data set, we offer an explanation
based on the principles of each method.

The idea of modeling the training set as a Ranked Atom Environments provides
a natural representation of the training set molecules as one entity. Molecules’
and fragments’ weights are obtained by an iterative procedure, accounting for
interactions between the fragments in a given training set. This novel representation
of the entire training set has an important consequence for screening new chemicals
because the similarity comparisons with the training set are straightforward, in contrast
to the classical pair-wise similarity assessments and the need to choose arbitrary
averaging statistics.

Atom environments provide a more efficient representation of 2D structural features
than fingerprints because they do not suffer from hashing procedures [19]. The results
obtained by averaging Tanimoto distance between atom environments of the 5 nearest
neighbors are of higher quality than DFT. In addition to the absence of hashing
procedure, local similarity by nearest neighbors is better exploited. Still, the choice of
the number of nearest neighbors is arbitrary and the information of how fragments are
distributed within the entire training set is not accounted for.

We ascribe the fact that similarity by Daylight-like fingerprints did not work well for
the following reasons. The fingerprint generation procedure includes hashing, meaning
that the same bin of the fingerprint can refer to more than one structural feature. This
may lower the discriminating ability of the hashed fingerprints. Another drawback is
the involvement of the consensus fingerprint as a representative for the dataset. For
example, if most of the bits in the consensus fingerprint are set, then the Tanimoto
distance between consensus fingerprint and query molecule fingerprint will provide
similar results for all molecules. The overarching goal of forming categories is to fill in,
reliably and efficiently, data gaps. Because of the considered scope of potential
applications involving thousands of chemicals, there is a need to develop computerized
procedures for categories formation. While the majority of efforts to screen large
chemical inventories focused to date on QSARs, we would like to bring attention to
broader exploitation of similarity methods because they may be better suited, especially
for complex human health endpoints. Given that many currently existing and developed
databases like ChemIDplus [27], ZINC [28], and PubChem [29] provide simple
structural similarity searches (although, not connected to toxicity information), their
direct use may be very tempting by risk assessors. However, as demonstrated with our
skin sensitization case study, relying only on structural similarity is not going to be
sufficient. There is a critical need to introduce endpoint specific context and knowledge
to guide similarity assessments.

The advantages of using mechanistic understanding as a guiding principle in
similarity assessment application to form categories appear manifold and meet many
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expectations expressed in the current definitions of the category. Namely, within a
category with common mechanism of action, a commonality such as similarity in
structures can be observed and characterized. This will allow more effective grouping of
chemicals than grouping based on chemical class or same activity as we observed in the
skin sensitization case study. Because of the common mechanism of toxicity, a
hypothesis supporting a given category can be formulated. With mechanistic hypothesis
comes reliability in predictions as was confirmed in modeling a variety of endpoints
including fish toxicity [30, 31].

The other difficulty categories often encounter is a small number of chemicals.
Our proposed approach can address it in the following way. First, we can group a
relatively large number of chemicals with known activity data acting via a common
mechanism. Second, we would model activity within the reactivity domain and only
then extract chemicals for the category. In this way, a category will rely on much more
data and potentially unclear trends within the category can be more easily elucidated by
analyses of the whole group with a common mechanism. While this process may be seen
as extrapolation because we are to extrapolate from outside a category into the
category, in reality the process is much closer to interpolation, a procedure regarded as
far more reliable, because a trend in the category is a piece of a larger trend for a group
with a common mechanism and hypothesis.

In addition, grouping based on common mechanism will resolve, at least partially,
the common problem of making predictions using data sets that are unbalanced
towards active chemicals and that lead to a high number of false positives. The majority
of chemical databases with safety information contain much more data on active, toxic
chemicals than on non-active, non-toxic chemicals and is reflected in the fact that
potency based classification models are not very reliable to identify weakly active and
non-active chemicals. Grouping chemicals by common mechanism will group chemicals
of whole spectrum of activities together, from highly toxic to non-toxic resulting in
better balanced sets, allowing for better statistical analyses and more equal
opportunities to identify active, weakly active and non-active chemicals. Finally,
having the trend for the category derived from the trend of the group will allow better
understanding of the trend and, therefore, should facilitate discussions of defining
boundaries for a category for a given regulatory application, a point often deemed as
very difficult in the practical application of the category concept.

So far, we discussed principles, but it is equally important to have a methodology
and tools, in our case software that will allow efficient, practical applications. By
creating benchmark AERs for reactivity domains, we demonstrated that we can directly
capture expert knowledge about mechanistic understanding into computer readable
language to quickly screen a large number of chemicals. This is a novel contribution
that allows minimizing information loss and addresses several limitations of existing
approaches to convert expert knowledge into computer readable information with the
goal to screen chemicals.

The most popular approach to convert expert knowledge about toxicity mechanism
to computer screening tool is to derive structural alerts. Structural alerts (SA) can be
derived using knowledge-based and statistically-based approaches. Knowledge-based
systems such as DEREK, OncoLogic, and HazardExpert [32] use rules about
generalized relationships between structure and biological activity that are heuristically
derived from human expert opinion and interpretation of toxicological data.
On the other hand, MultiCASE [33] derives structural alerts, called biophores,
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using a statistical mining technique from a training set of non-congeneric compounds in
a formal manner. Structural alerts are geared towards finding an active substance as
they ignore the remaining part of the molecule and, thus, they do not consider
activating or detoxifying mechanisms in a balanced way. Moreover, structural alerts
will not discriminate between non-toxic compounds and compounds for which there is
no information on toxicity available.

A more refined approach to code mechanistic understanding is to combine in some
logic manner structural alerts with molecular descriptors in characterizing mechanisms
of toxicity (e.g., [18]). This approach allows capturing 3D information by using 3D
descriptors, in addition to 2D information, that helps to consider whole molecule and
better identifies non-active compounds. However, this approach is very data ‘‘hungry’’
because when dealing with heterogeneous datasets one needs to identify different
descriptors for different subsets that are nota bene, in part, heuristically determined.
In addition, a simple logical combination of SA with molecular descriptor may
compromise the quality of prediction in the case of non-linear dependencies between
them. Finally, by using descriptors, a chance of not capturing structure in all relevant
ways remains because conversion to descriptors is always associated with some
information loss.

We see reference AERs as the next refinement of expert knowledge conversion
approaches into computer readable format. In the benchmark AER, all structural
information about training set is retained and there is no need no extract descriptors.
It is very transparent and straightforward as the AER algorithm identifies the
fragments responsible for the similarity. Interactions, including non-linear interactions
between SA and the rest of the molecule are captured, but do not have to be specified
a priori. In fact, we offer a method that will allow for mechanistic screening without the
need to explicitly formalize, many parameterize details that are not available,
a situation frequently encountered in toxicology. The reference AERs are very easy
to update if more data become available. Finally, reference AERs are less data
‘‘hungry’’ than other mentioned methods because more information about the training
set is retained.

The fact that benchmark AER are less data hungry and that we demonstrated
significant differences in performance benchmarks based on AER, AET, and especially
DFTs leads to an interesting observation regarding the roadblocks to apply computer-
based methods to screen chemicals. Too often, lack of data was seen as a major
obstacle. The issue that might have been overlooked is the proper computer
representation of expert knowledge and structural information minimizing information
loss.

More research is needed on how to express mechanism of action to make it useful
for computer screening since we only analyzed one set that was available to us.
While we got promising results for skin sensitization based on chemical reactivity, it is
possible that for other endpoints, different formulations will be more suitable.
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