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Recently, the COmmon REactivity PAttern (COREPA)
approach was developed as a probabilistic classification
method which was formalized specifically to advance
mechanistic QSAR development by addressing the impact
of molecular flexibility on stereoelectronic properties of
chemicals. In the initial version of COREPA, the proba-
bility distributions for only one stereoelectronic parameter
at a time were analyzed for the series of chemicals under
analysis. To go beyond considering probability distribu-
tions of one parameter at a time requires the capability of
analyzing a suite of parameters simultaneously for each
chemical. This work creates that capability for a multi-
dimensional formulation of the COREPA which is ex-

pected to enhance the reliability of the method to
discriminate complex patterns. Using probability distance
measures such as Kullback-Leibler divergence and Hel-
linger distance, the set of parameters are defined that best
discriminate activity. The COREPA-M system automati-
cally identifies the parameters that best discriminates
chemicals in groups defined by comparable reactivity
endpoints. A detailed Bayesian decision tree is then used
for classifying untested chemicals with measures of ™good-
ness of fit∫ criteria. COREPA-M is illustrated using the
example of modelling binding affinity of chemicals at the
aryl hydrocarbon receptor.

1 Introduction

The evolution ofQSARapproaches for chemical design and
riskmanagement involves the development of newmethods
for quantifying molecular structure, the identification of
moremechanistic endpointswithin biological pathways, and
more objective approaches for discovering plausible mech-
anistic structure-activity relationships. The use of stereo-
electronic parameters in quantifying structural variation in
heterogeneous datasets and libraries requires a formal
treatment of the flexibility of chemicals and the possibility
that even a moderately flexible chemical can have many
low-energy structures which are not adequately represented
by minimum energy conformations. The lowest-energy
conformer might have weak interactions with macromole-
cules or steric incompatibilities whereas other conforma-
tions within permitted energies boundaries may have strong
interactions [1 ± 5]. For example,QSARs for binding affinity
to the aryl hydrocarbon receptor (AhR) using minimum

energy conformations have generally failed, whereas
QSARs using charge-transfer parameters computed for
the most planar conformations were successful [6]. Even in
the AhR model, nonetheless, the selection of the most
planar conformation was only a reasonable assumption
based on knowledge of the receptor which was imposed on
the QSAR analysis instead of being derived directly from
the data. For more complex QSAR explorations to be
successful without a priori assumptions of geometry, a
formal mathematical approach is needed to derive models
for complex interactions.
The COmmon REactivity PAttern (COREPA) formal-

ism treats this complexQSARexploration as a classification
task [2, 3]. Classificationmethods identify criteria whichwill
classify an unknown object into predefined classes using a
training set of objects from multiple classes. Probabilistic
methods, discriminant analyses, nearest-neighbour classi-
fiers, neural networks and decision trees are representative
classification techniques. The COREPA formalism uses a
Bayesian probabilistic method to identify common struc-
tural characteristics among chemicals that elicit similar
biological activity, or class; but does so in a context that
allowsmany possible conformations of individual chemicals
and the probability distribution of molecular descriptor
values instead of single parameter values for each chemical.
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The common structural characteristics can then be objec-
tively encoded into a decision tree to screen large and
structurally heterogeneous chemical libraries for the
sought-after biological activity.
Our recent presentation of COREPA focused on math-

ematical and combinatorial problems ofmigrating from two
dimensional (2D) chemical structures to three dimensional
(3D) conformations and the identification of common
patterns within single parameter distributions. Available
algorithms for 2D-3D structure migration can introduce
significant non-deterministic variation and ultimately affect
the QSAR outcome if active conformers are designated by
ad hoc selection [1, 4, 7]. The COREPA method examines
the distribution of all energetically reasonable conforma-
tions for the structure, but selects active conformations on a
case-by-case basis using the activity endpoints of specific
studies. To achieve this capability, COREPA introduced a
new approach to evaluate similarity between chemicals
based on parameter distributions derived from the distri-
bution of 3-D conformations. Typically, this requires align-
ing with the template structures that could yield ambiguous
results when molecular flexibility is taken into account.
COREPA circumvents the problem of structure alignment
by defining and analyzing the common reactivity pattern.
The common reactivity pattern consists of the normalized
sum of conformational distributions of chemicals across the
descriptor axis. The descriptors which best discriminating
chemicals into classes of biological similarity are selected
among those potentially associated with the specific bio-
logical endpoint. Thus, instead of aligning structural repre-
sentatives of chemicals, their conformational distributions
are compared.
In the original formulation of the method the common

reactivity patterns have been determined across single
parameter axis in terms of parameter ranges. While simple
for interpretation, the one-dimensional formulation signifi-
cantly limited the discrimination ability of the COREPA
approach. The classification model, represented by a
decision tree, consisted of multiple hierarchically ordered
rules based on the parameter ranges that comprise common
reactivity patterns. The decision tree within the original
formulation, however, was built manually which imposed
ambiguity and difficulties in statistical evaluation of the
obtained results.
The present paper describes a new formulation of the

COREPA method, where the efforts have been focused in
two directions: developing multi-dimensional reactivity
patterns (COREPA-M) and automated building of the
decision trees under user defined constraints. The mathe-
matical formalism of COREPA-M will be presented in
details along with an example of deriving a COREPA
decision tree for screening libraries

2 Methods

2.1 AhR Receptor Binding Data

The performance of the COREPA-M formulation was
tested using a high quality database for the binding affinity
of chemical to the aryl hydrocarbon receptor reported by
Safe et al. [8]. The binding affinity, EC50, is defined as the
concentration of the test chemical necessary to reduce the
specific binding of [3H]TCDD (2,3,7,8- tetrachlorodibenzo-
p-dioxin) to 50% of the maximal value in the absence of the
competitor. Ligands for this receptor include many poly-
cyclic aromatic hydrocarbons and many adverse ™dioxin-
like∫ effects have been linked to the AhR binding as the
molecular initiating event for these toxicity pathways.
Consequently, AhR binding is one important endpoint in
the evaluation of possible toxic effects of drugs, pesticides
and industrial chemicals. The binding affinities for a broad
range of polychlorinated biphenyls (PCBs), polychlorinated
dibenzofurans (PCDFs) and polychlorinated dibenzo-p-
dioxins (PCDDs) were compiled from the literature as
described previously [8], and the compilation is presented in
Table 1 to aid in the discussion of the COREPA-M models.

2.2 Ligand Conformational Analysis

The OASIS (Optimized Approach based on Structural
Indices Set) software [9] was used to generate conforma-
tions of all ligands in the database [4, 7]. Although, the best
approach for computing plausible conformations for large,
highly flexible chemicals may be the OASIS genetic
algorithm which avoids some combinatorial problems by
minimizing similarity of conformers [4], a second option
available for less flexible chemicals like PCBs is 3DGEN [7]
which is a combinatorial approach to generate all con-
formers in the context of steric constraints on distances
between non-bonded atoms, ring-closure limits, torsional
resolution and expert rules for the likelihood of intra-
molecular hydrogen bonds, cis/trans and optical isomers. A
unique aspect of the approach involves the initial propaga-
tion of a cyclic 3-D molecular skeleton prescribed by a
topological ranking a recursive procedure based on the 3-D
information of previously established bonds. This includes
the atom type and hybridization of the atoms incident to the
bond being constructed as well as the two atoms associated
with the previously completed bond. Cyclic fragments
incident to the bond being constructed are also retained.
Bond lengths and valence angles are determined through a
molecular mechanics parameterization. During the prop-
agation of the acyclic components, cyclic character is gained
through defined ring-closure constraints. Rotamers associ-
ated with all torsional angles that meet hybridization and
specified geometric constraints are retained. Thus, the
approach identifies flexibility in saturated cyclic and acyclic
moleculeswhere techniques involvingonly rotations around
acyclic single bonds do not.
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Strain within plausible conformations is corrected with a
pseudo molecular mechanics (PMM) strain-relief proce-
dure based on a truncated force field energy-like function,
where the electrostatic terms are omitted [4, 7]. The basic
form and parameterization of the interatomic interactions
were taken from theChem.-X force field [10, 11]. Geometry
optimization was achieved using MOPAC 93 [12, 13] with
theAM1Hamiltonian. The conformers are also screened to
eliminate those whose heat of formation (�Ho

ff) is greater
from the �Ho

ff associated with the conformer with lowest
energy by a threshold of 15 ± 20 kcal/mol and eliminate
conformational degeneracy [14, 15].

2.3 Molecular Descriptors

There are hundreds of molecular descriptors being used in
QSAR and few have consistent mechanistic interpretation
over large diverse sets of chemicals.When there is sufficient
mechanistic evidence for the structure-activity relation of
interest, an informal assessment to limit the molecular
descriptors is prudent [16]. From preceding studies of AhR
binding affinity of PCBs, PCDFs and PCDDs, available
information suggests that charge-transfer interactions con-
trol binding energy and there are substantial steric con-
straints [6, 8]. Therefore, to demonstrate COREPA-M, we
limited the list of molecular descriptors to LUMO energy
(ELUMO), HOMO energy (EHOMO), HOMO-LUMO energy
gap (Egap), Electronegativity EN; dipole moment (�),
volume polarizability (VolP; defined as a sum of atomic
self-polarizabilities), maximum donor (Dmax) and acceptor
(Amax) delocalizabilities, maximum (Qmax) and minimum
(Qmin) charges, maximum (B_order_max) and minimum
((B_order_min) bond order, degree of stretching or com-
pactness (quantified by the geometric analogue of Wiener
index, GW, i.e., by the sum of interatomic steric distances),
greatest interatomic distance (Lmax), planarity (normalized
sum of torsion angles in a molecule); effective cross-section
diamater (Diameff), maximum diamater (Diammax), dis-
tance between wild card heteroatoms (O, N, F, Cl, Br, I).
Physicochemical and volumetric indices ± logKOW, Van der
Waals volume (VAN_D_WAALS_VOL.), surface
(VAN_D_WAALS_SUR.), solvent accessible surface
(SAS1.5; assuming water as a solvent) calculated bymaking
use of Connoly algorithm [17] and charged partial surface
areas (CPSAs) as introduced in [18] by Stanton and Jurs.

3 The COREPA Method

Similarity is inherently a multi-dimensional problem. Clas-
sification methods seek to define n-dimensional patterns as
well as decision boundaries between the groups in n-
dimensional space. It is beyond the scope of this paper to
review these methods, but common limitations in the
measure of similarity between chemicals are the use of
point estimates for chemical and distance measures as a

measure of similarity. Euclidean distances can only be linear
which limits application to classifications where active and
inactive chemicals can be separated by a hyper-surface.

3.1 Probabilistic Approach to Quantification of Chemicals
Structures

COREPA uses a probabilistic approach based on Bayes
theorem and provides a theoretically optimal decision rule
[19, 20]. The Bayesian minimum error decision rule
guarantees lowest classification error if the class-conditional
probability distributions are known.This requirement ismet
inCOREPAby estimating the class-conditioned probability
distribution through a series of mathematical approxima-
tions. While the number of plausible conformers for a
flexible chemical is large, only a representative sampleof the
conformers are needed to estimate the resulting probability
distributions for a each molecular descriptor for each
chemical. The probability distribution for the conformers
is approximated from a Boltzman energy distribution. The
probability of forming a specific conformer is p(x �Csj),
where Csj denotes the j-th conformer of the chemical S. The
probability of that chemical having a specific molecular
descriptor value is denoted as p(x � Si) in Eq. 1:

p�x Si�� �
�Ri

j�1
p�Cij�p�x Cij

�� � �1�

where Si is the i-th chemical in the data set, Ri is the number
of conformers for the compound Si, and p(Cij) is the
probability to have the j-th conformer of a i-th compound.
The Boltzman probability p(Cij) can be estimated with

Eq. 2:

p�Cij� �
e��Ej�kBT

�N
m�1

e��Em�kBT

� �2�

where �Ej�Ej�Emin and Emin is the energy of the con-
former with minimal energy.
The application of formula for the kernel density estimate

to p(x �Cij), gives

p�x Cij

�� � � 1
Nijh

�Nij

k�1
�

x� xijk
h

� �� �
�3�

where Nij is the number of values of descriptor x for j-th
conformer of i-th chemicals.
Substitution of Eq. 2 and Eq. 3 into Eq. 1 allows calcu-

lation of a conformational distribution of a compound across
a descriptor x.

p�x Si� � �
�Ri

j�1

e��Ej�kBT

�N
m�1

e�Em�kBT

1
Nijh

�Nij

k�1
�

x� xijk
h

� �� �
�4�
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To create a probability distribution for each value of
descriptor x a kernel density function [21] is superimposed
on each individual data point, and these data density kernels
are summed and normalized to give an overall probability
distribution. The kernel density function, �(x), provides a
bounded symmetrical probability distribution function for
estimation of the class-conditional probability distribution
as shown in Eq. 5:

p�x� � 1
nh

�n
k�1

�
x� xk
h

� �
� �5�

where h is a smoothing parameter. The smoothing function
can be optimized through cross-validation; however, COR-
EPA-M sets the initial smoothing as h � 1�059�

���
n5

�
, � being

the standard deviation of the data set and n being the
number of data points [21].
Figure 1 illustrates the transform of discrete values of

molecular descriptors for a specific conformation into a
distribution around each value. In addition to varying the
exploration the possible distribution of the molecular
descriptors for a chemical by adjusting the smoothing
function, COREPA-M provide options for Gaussian, Lor-
enz, Laplace, or Epanechnikov kernel density functions to
make sure theQSARoutcome is not sensitive to selection of
�(x).
The ™weight∫ of the kernel density is proportional to the

probability of finding a conformation for any specific value
of a molecular descriptor. The estimated probability dis-
tribution for the molecular descriptor is computed as the
sum of the conformer kernel densities allong the axis as
shown in Eq. 6.

p�x Si� � �
�Ri

j�1

�Nij

k�1

�ij

h
�

x� xijk
h

� �
�

�ij �
e��Ej�kBT

Nij

�N
m�1

e��Em�kBT

�6�

To illustrate this approach, conformations of Genestin and
ICI_182780 were generated and the energies of the highest
occupied molecular orbital E(HOMO) were computed as
shown in Figure 2. These chemicals have significantly
different E(HOMO) when computed for the lowest energy
conformations; however, depending on which conforma-
tions were chosen to compare the two chemicals, different
conclusions would be drawn about which chemical has
greater E(HOMO). Figure 2 illustrates that some of the
conformations have overlapping E(HOMO).
As a final stage in the quantification of chemical structure,

COREPA generates the overall probability distribution for
descriptor x for each chemical as shown in the composite
graphs in Figure 3. Rather than using point estimates for a
molecular descriptor from a single conformation of a
chemical, the molecule is represented as probability distri-
butions for all molecular descriptors in subsequent analysis
of molecular similarity and differences with respect to
classes of biologically active chemicals.

3.2 Similarity Between Chemical Structures

One immediate application of the estimation of the
probability distributions for the molecular descriptors of
two chemicals would be to compare the distributions as a
measure ofmolecular similarity [22]. The similarity between
chemicals can be quantified using probability distance such
as the Kullback-Leibler divergence or the Chernov, Bhat-
tacharyya, Matusita, Hellinger, Mahalanobis, Patrick-Fish-
er distances [20, 23 ± 26]. The Hellinger distance is used in
COREPA-M software and is calculated with Eq. 7:

HD2
1�2 �HD(p1(x), p2(x))�

	 
 �����������
p1�x�

� � �����������
p2�x�

� �
2dx (7)

The minimum value of the Hellinger distance is zero, and it
is reached when two probability density functions are the
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same. The maximum value of the Hellinger distance is two,
and it is reached when two probability density functions are
most distinct. Higher Hellinger distance values mean high
dissimilarity between chemical probability distributions.

3.3 Similarity Between Classes of Chemical. Class-
conditioned Probability Distributions

The larger objective of COREPA-M, however, is to develop
a mathematical formalism for comparing the class-condi-
tioned probability distributions of one class of chemicals
with those of a second class as well as to assigning
unclassified chemicals to one of the predefined classes
based on their molecular descriptors. In the general form,
the class-conditional probability is given by Eq. 8. The
probability of having descriptor x with certain value, while
being in class m can be calculated by:

p�x classm� � �
�Mm

i�1
P�Si�p�x Si� �� �8�

where Mm is the number of chemicals in classm; p(x � Si) is
defined by Eq. 6; and P(Si) is an a priori probability of a
compound Si to belong to classm. If the a priori probabilities
are approximately equal, the class conditional probability
can be calculated by Eq. 9:

p�x classm� � �
�Mm

i�1

1
Mm

p�x Si� � �9�

Substitution of Eq. 6 into Eq. 9 gives a formula for
calculation of class-conditional probability density for a
set of flexible chemicals with known descriptor x values:

p�x classm� � � 1
Mm

�Mm

i�1

�Ri

j�1

�Nij

k�1

�ij

h
�

x� xijk
h

� �
�10�

Using the kernel density estimation formula (Eq. 3) re-
quires calculationof the kernel function for each chemical in
the class. WhenN is large, the computational time becomes
prohibitive and the probability density can be streamlined
using preliminary binning and Fast Fourier transform
methods [21].

3.4 Decision Rules in Classification. A posteriori
Probability Distributions

The class-conditioned probability distribution density can
be interpreted as a reactivity pattern with respect to
molecular descriptor x and for a class of chemicals with
common biological activity. While p(x � classm) is a measure
of similarity between chemicals in the class, only in the
simplest cases would two or more classes of chemicals be
delineated by a single molecular descriptor. Moreover, in
addition to examining probabilitiy distributions in multiple
demensions, successful classification requires the capability
of having a chemicals with probabilities for belonging to
more than one class. The decision rules for classification is
summarized in Figure 4 where p(x � classm) is shown for two
classes in 4(a). The Bayesian a posteriori probability
distribution, p(classm � x) , is computed in 4(b) and the
decision rule is to classify a chemical with molecular
descriptor x into the class with the greatest p(classm � x) as
shown in 4(c).

3.5 Bayesian Multidimensional Classification

COREPA-Mwas formulated to facilitate the exploration of
reactivity patterns for classes of chemicals which are defined
using multiple molecular descriptors. Bayes formula has no
restriction on the dimensionality of involved probability
functions and class-conditioned probabilities using multiple
molecular descriptors x1 ...xn.

P�classi �x1� � � � xn� �� � P�classi�p��x1� � � � xn� classi� ��k
j�1

P�classj���x1� � � � xn� classj
�� �

� �11�
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Again, the decision rule for classification is to put a new
chemical into the class with the greatest a posteriori
probability. The only difference is that, if joint probability
p((x1, ...xn) � classm) is to be estimated via kernel density
technique, n-dimensional kernels should be placed on every
data point and then summed. In the initial version of
COREPA, the probability distributions are estimated only
across single descriptor. COREPA-M allows multidimen-
sional probability density estimation. For the sake of
simplicity and faster calculation, descriptors are assumed
to be independent. This allows calculation of joint proba-
bility as product of one-dimensional probabilities using
Eq. 12:

p��x1� � � � xn� classi� � �

n
k�1

p�xk classi� � �12�

Individual probability densities p(xk � classi) are estimated
through kernel density estimation as explained in section
above. The assumption of othogonal descriptors is a severe
requirement and generally cannot be met in most real data
sets. Violation of the assumption of independence leads to
lower classification quality.While the solutionmay be to use
multivariate joint density estimates, sufficient data are
seldom available to do so.

3.6 Bayesian Decision Networks

The final step in exploring structure-activity relationships is
to objectively identify the molecular descriptors that best
explain the variance in the data and provide mechanistic
interpretations. COREPA-M uses class conditional proba-
bilities to discriminate between classes of chemicals and
identifies those molecular descriptors which show the least
amount of overlap between class-conditional probabilities.
The power of a molecular descriptors to distinguish
chemical classes is measured in COREPA-M by Hellinger
distance between classes. Mathematically, the delineation
power of each descriptor is defined by Eq. 13:

DescriptorsQuality �x1� � � � � xn� classk�

� HD�p�x1� � � � � xn classk� �� p x1� � � � � xn
�K
i�1
i��k

classi

�������
�
��

�
�� �13�

Todevelop the classification rule-basewhich can be used for
screening untested chemicals in heterogenous libraries,
COREPA-M creates a binary decision network or tree from
the probability distributions. The ™best∫ set of descriptors is
selected and chemicals are classified according to Bayesian
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minimum error decision rule. The training set is split
according to Bayesian minimum decision rule with rejec-
tion. On creating a node, the class-conditional probability
densities for the ™best set∫ of parameters are evaluated and
stored in the node. The a posteriori probabilities for all the
conformers in the training set are evaluated as:

p�classi 	x1� � � � � xm
� � � p�	x1� � � � � xm classi�
�K
c�1

p�	x1� � � � � xm classc�

�14�

The conformers, which have maximum value of the proba-
bility to belong to ™class to split∫ follow ™Yes∫ branch. All
other chemicals follow the ™No∫ branch. The propagation of
the decision tree is continued until stopping criteria such as
95% confidence limits, minimum numbers of conformers is a
class, ormaximumdepth of the tree as set by the user aremet.

3.7 Cross-validation

The COREPA-M decision tree could be cross-validated by
deriving it with part of the data only and using the rest as and
external test data. When n-fold cross-validation is applied,
the initial data set is divided into n subsets; the decision tree
is derived n times and for each of themone of the n subsets is
eliminated from initial training set. The eliminated subsets
of chemicals are used as external validation sets for decision
trees derived using the rest of the initial training set.
Eventually, each of the chemicals from initial training set is
predicted within the respective external validation sets. The
statistical estimates of the decision tree (sensitivity, S; rate of
false positives, FP; concordance, C, etc.) derived on whole
training set are comparedwith those (Scross, FPcross, andCcross)
associated with the models based on the reduced training
sets; one should emphasize that cross-validated estimates
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Figure 5. The COREPA-M decision tree for discriminating the three classes of chemicals according to their potency: 1� log(1/EC50)� 4
(class I), 4� log(1/EC50)� 7 (class II), and 7� log(1/EC50)� 10 (class III); generated by not applying ™keep together∫ classification
scheme, n� 1 (maximum two parameters at a node), P� 50%, (posterioir probability threshold, P%), Chi sq� on, and Hellinger
Distance for selecting best parameters. Colors from the row model are not visualized in the graph.
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are based on the same number of chemicals as that of the
initial training set (each of the chemicals from initial training
set can be found on one of the n eliminated subsets).
Similarly, one could compare the lists of the best-selected
parameters of these models. The smaller the differences
between goodness criteria of the models based on whole
training set and part of it the more robust is the model and
more reliable the predictions for unknown chemicals.

4 Results and Discussion

The need for an objective method to explore structure-
activity relationships can be demonstrated in a compara-
tively simple case of binding to the Ah receptor. Clearly,
multivariate methods are adequate to explore relationships
between activity and chemicals which have discrete mo-
lecular discriptors . However, when flexible chemicals are

included and the molecular descriptors vary with confor-
mation, objectivity is lost when a specific conformation is
chosen for the exploration. For example, in modeling
binding to the AhR, stereoelectronic descriptors did not
predict binding unless we imposed the planarity constraint
on the ™active form∫ and used descriptors for the most
planar conformation. COREPA-M was created to see if a
formal methods could determine these patterns without
investigator judgement.
The conformers for the PCBs, PCDFs and PCDDs were

generated andoptimized for the chemicals in the training set
(Table 1), producing a total of 185 structures including 125
conformers of the 30 PCBs congeners and a single con-
former for each of PCDFs and PCDDs. Each individual
chemical (and all possible conformations thereof) was
classified into one of three classes of reactivity based on
the binding to the Ah receptor using the following thresh-
olds: Class I-least active with 1� log(1/EC50)� 4 and seven

12 ¹ 2004 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim QSAR Comb. Sci. 2004, 23

Table 1. Observed and predicted AhR binding affinities. The COREPA-M model from Figure 5 was used for predicting AhR binding
affinity classes.

No. Name Observed Predicted

Probabilities Ultimate class

Log1/EC50 class class III class II class I

1 3,3�,4,4�-Tetrachlorobiphenyl 6,15 2 0.23 1 0 2
2 2,3,4,4�-Tetrachlorobiphenyl 4,55 2 0.23 1 0.1 2
3 3,3�,4,4�,5-Pentachlorobiphenyl 6,89 2 0.23 1 0 2
4 2�,3,4,4�,5-Pentachlorobiphenyl 4,85 2 0.23 1 0 2
5 2,3,3�,4,4�-Pentachlorobiphenyl 5,37 2 0.23 1 0 2
6 2,3�,4,4�,5-Pentachlorobiphenyl 5,04 2 0.23 1 0 2
7 2,3,4,4�,5-Pentachlorobiphenyl 5,39 2 0.23 1 0 2
8 2,3,3�,4,4�,5-Hexachlorobiphenyl 5,15 2 0.23 1 0 2
9 2,3�,4,4�,5,5�-Hexachlorobiphenyl 4,8 2 0.23 1 0 2
10 2,3,3�,4,4�,5�-Hexachlorobiphenyl 5,33 2 0.23 1 0 2
11 2,2�,4,4�-Tetrachlorobiphenyl 3,89 1 0.23 0 1 1
12 2,2�,4,4�,5,5�-Hexachlorobiphenyl 4,1 2 0.23 1 0 2
13 2,3,4,5-Tetrachlorobiphenyl 3,85 1 0.23 0.59 1 1
14 2,3�,4,4�,5�,6-Hexachlorobiphenyl 4 2 0.23 1 0 2
15 4�-Hydroxy-2,3,4,5-tetrachlorobiphenyl 4,05 2 0.23 1 0 2
16 4�-Methyl-2,3,4,5-tetrachlorobiphenyl 4,51 2 0 1 0 2
17 4�-Fluoro-2,3,4,5-tetrachlorobiphenyl 4,6 2 0.23 1 0 2
18 4�-Methoxy-2,3,4,5-tetrachlorobiphenyl 4,8 2 0 1 0 2
19 4�-Acetyl-2,3,4,5-tetrachlorobiphenyl 5,17 2 0 1 0 2
20 4�-Cyano-2,3,4,5-tetrachlorobiphenyl 5,27 2 0.23 1 0.39 2
21 4�-Ethyl-2,3,4,5-tetrachlorobiphenyl 5,46 2 0 1 0 2
22 4�-Bromo-2,3,4,5-tetrachlorobiphenyl 5,6 2 0.23 1 0 2
23 4�-Iodo-2,3,4,5-tetrachlorobiphenyl 5,82 2 0.23 1 0 2
24 4�-Isopropyl-2,3,4,5-tetrachlorobiphenyl 5,89 2 0 1 0 2
25 4�-Trifluormethyl-2,3,4,5-tetrachlorobiphenyl 6,43 2 0 1 0 2
26 3�-Nitro-2,3,4,5-tetrachlorobiphenyl 4,85 2 0.23 1 0 2
27 4�-N-Acetylamino-2,3,4,5-tetrachlorobiphenyl 5,09 2 0 1 0 2
28 4�-Phenyl-2,3,4,5-tetrachlorobiphenyl 5,18 2 0.23 1 0 2
29 4�-t-Butyl-2,3,4,5-tetrachlorobiphenyl 5,17 2 0 1 0 2
30 4�-n-Butyl-2,3,4,5-tetrachlorobiphenyl 5,13 2 0 1 0 2
31 2,3,7,8-Tetrachlorodibenzo-p-dioxin 8 3 0.79 0.21 0 3
32 1,2,3,7,8-Pentachlorodibenzo-p-dioxin 7,1 3 0.55 0.45 0 3
33 2,3,6,7-Tetrachlorodibenzo-p-dioxin 6,8 2 0.79 0.21 0 3
34 2,3,6-Trichlorodibenzo-p-dioxin 6,66 2 0.49 1 0 2
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Table 1. (cont.)

No. Name Observed Predicted

Probabilities Ultimate class

Log1/EC50 class class III class II class I

35 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 6,55 2 0.47 1 0 2
36 1,3,7,8-Tetrachlorodibenzo-p-dioxin 6,1 2 0.66 0.34 0 3
37 1,2,4,7,8-Pentachlorodibenzo-p-dioxin 5,96 2 0.4 0.6 0 2
38 1,2,3,4-Tetrachlorodibenzo-p-dioxin 5,89 2 0.32 0.68 0 2
39 2,3,7-Trichlorodibenzo-p-dioxin 7,15 3 0.71 0.29 0 3
40 2,8-Dichlorodibenzo-p-dioxin 5,5 2 0 1 0 2
41 1,2,3,4,7-Pentachlorodibenzo-p-dioxin 5,19 2 0.54 0.46 0 3
42 1,2,4-Trichlorodibenzo-p-dioxin 4,89 2 0.79 0.21 0 3
43 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin 5 2 0 1 0 2
44 1-Chlorodibenzo-p-dioxin 4 2 0.14 0.86 0 2
45 2,3,7,8-Tetrabromodibenzo-p-dioxin 8,82 3 1 0 0 3
46 2,3-Dibromo-7,8-dichlorodibenzo-p-dioxin 8,83 3 1 0 0 3
47 2,8-Dibromo-3,7-dichlorodibenzo-p- 9,35 3 1 0 0 3
48 2-Bromo-3,7,8-trichlorodibenzo-p-dioxin 7,94 3 1 0 0 3
49 1,3,7,8,9-Pentabromodibenzo-p-dioxin 7,03 3 1 0 0 3
50 1,3,7,8-Tetrabromodibenzo-p-dioxin 8,7 3 1 0 0 3
51 1,2,4,7,8-Pentabromodibenzo-p-dioxin 7,77 3 1 0 0 3
52 1,2,3,7,8-Pentabromodibenzo-p-dioxin 8,18 3 1 0 0 3
53 2,3,7-Tribromodibenzo-p-dioxin 8,93 3 1 0 0 3
54 2,7-Dibromodibenzo-p-dioxin 7,81 3 0.94 0.06 0 3
55 2-Bromodibenzo-p-dioxin 6,53 2 0.74 0.26 0 3
56 2-Chlorodibenzofuran 3,55 1 0 0 1 1
57 3-Chlorodibenzofuran 4,38 2 0 1 0.3 2
58 4-Chlorodibenzofuran 3 1 0 0 1 1
59 2,3-Dichlorodibenzofuran 5,33 2 0 1 0 2
60 2,6-Dichlorodibenzofuran 3,61 1 0 0 1 1
61 2,8-Dichlorodibenzofuran 3,59 1 0 0 1 1
62 1,3,6-Trichlorodibenzofuran 5,36 2 0.66 0.34 0 3
63 1,3,8-Trichlorodibenzofuran 4,07 2 0 1 0 2
64 2,3,4-Trichlorodibenzofuran 4,72 2 0.65 0.35 0 3
65 2,3,8-Trichlorodibenzofuran 6 2 0 1 0 2
66 2,6,7-Thrichlorodibenzofuran 6,35 2 0 1 0 2
67 2,3,4,6-Tetrachlorodibenzofuran 6,46 2 0.7 0.3 0 3
68 2,3,4,8-Tetrachlorodibenzofuran 6,7 2 0 1 0 2
69 1,3,6,8-Tetrachlorodibenzofuran 6,66 2 0.56 0.44 0 3
70 2,3,7,8-Tetrachlorodibenzofuran 7,39 3 0.78 0.22 0 3
71 1,2,4,8-Tetrachlorodibenzofuran 5 2 0 1 0 2
72 1,2,4,6,7-Pentachlorodibenzofuran 7,17 3 0.79 0.21 0 3
73 1,2,4,7,9-Pentachlorodibenzofuran 4,7 2 0.38 0.62 0 2
74 1,2,3,4,8-Pentachlorodibenzofuran 6,92 2 0 1 0 2
75 1,2,3,7,8-Pentachlorodibenzofuran 7,13 3 0.77 0.23 0 3
76 1,2,4,7,8-Pentachlorodibenzofuran 5,89 2 0.78 0.22 0 3
77 2,3,4,7,8-Pentachlorodibenzofuran 7,82 3 0.77 0.23 0 3
78 1,2,3,4,7,8-Hexachlorodibenzofuran 6,64 2 0.79 0.21 0 3
79 1,2,3,6,7,8-Hexachlorodibenzofuran 6,57 2 0.56 0.44 0 3
80 1,2,4,6,7,8-Hexachlorodibenzofuran 5,08 2 0.36 0.64 0 2
81 2,3,4,6,7,8-Hexachlorodibenzofuran 7,33 3 0.56 0.44 0 3
82 2,3,6,8-Tetrachlorodibenzofuran 6,66 2 0.77 0.23 0 3
83 1,2,3,6-Tetrachlorodibenzofuran 6,46 2 0.65 0.35 0 3
84 1,2,3,7-Tetrachlorodibenzofuran 6,96 2 0.77 0.23 0 3
85 1,3,4,7,8-Pentachlorodibenzofuran 6,7 2 0.77 0.23 0 3
86 2,3,4,7,9-Pentachlorodibenzofuran 6,7 2 0.54 0.46 0 3
87 1,2,3,7,9-Pentachlorodibenzofuran 6,4 2 0.32 0.68 0 2
88 2,3,4,7-Tetrachlorodibenzofuran 7,6 3 0.64 0.36 0 3
89 1,2,4,6,8-Pentachlorodibenzofuran 5,51 2 0.66 0.34 0 3
90 dibenzofuran 3 1 0 0 1 1
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chemicals, 11 conformers; Class II-with 4� log(1/EC50)� 7
and 64 chemicals, 155 conformers; Class III-most activewith
7� log(1/EC50)� 10 and 19 chemicals- 19 conformers. A
typical COREPA-M decision tree for discriminating these
three classes of chemicals is illustrated in Figure 5.
The results of the COREPA-M classification can be

interpreted as a potential model for statistical classification
of chemicals. The predicted activity classes for the set
chemicals using the decision tree from Figure 5 are listed in
Table 1. The statistics of the COREPA models obtained
without and with the ™keep conformaters together∫ classi-
fication schemes are listed in Tables 2a and 2b, respectively.
Models are evaluated by confusion matrix classification
errors for chemicals and conformers. Goodness criteria,
such as sensitivity and false positives for three classes of
chemicals are presented as well when all chemicals are used
for deriving models (S and FP, respectively) and after 4-fold
cross validation (Scross, FPcross, respectively). S and FP are
based on the classification of conformers of the chemicals
according to the highest class-conditional probabilities, p(x �
classi ) Hence, this classification of chemicals is based on
their most active conformers wherein the chemical is
asigned to the class with highest activity reached by all
conformers.
The increase in number of parameters in nodes appears to

slightly increase the model accuracy. Thus, %Corr/Incorr
predictions for chemicals are 80/20% and 89/11% for n�
1and n� 2, respectively (same holds for other statistical
estimates, as seen in Table 2b). Increasing the posteriori
probability thresholds from P� 50% to P� 70% was
expected to enhance the rate of false negative identifications
at the cost of reduced rates of false positives.However,while
the false positives were reduced, the rates of false negative
identifications were not always increased. In general, the
™keep together∫ classification scheme demonstrated better
performance. This clearly can be seen from the summary
classification errors listed in the confusion matrices. The
same holds for goodness criteria (S and FP). Moreover,
™keep together∫models aremore stable than the alternative
classification schemewith respect to 4-fold cross-validation.
As demonstrated in Figure 6 (andTable 2), the difference in
S and Scross , and FP and FPcross are smaller for COREPA-
M models derived with ™keep together∫ classification
scheme. In general, cross-validation analysis showed that
all derived COREPAmodels are stable especially at higher
thresholds for posteriori probabilities (P%).
Behind the classification results in the COREPA ap-

proach, however, are the estimated class-conditional prob-
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� Figure 6. Comparison between sensitivity and rate of false
positive predictions of models with n� 2 derived when all
chemicals have been included in correlation sample (S and FP,
respectively) and after 4-fold cross validation (Scross, FPcross):
with ™keep together∫ classification scheme and P� 50% (a) and
P� 70% (b) and without ™keep together∫ classification scheme
and P� 50% (c) and P� 70% (d).
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abilities which may be more instructive than the classifica-
tion, itself. For example, chemical #13 (2,3,4,5-tetrachlor-
obiphenyl) has three conformers, and two of them were
predicted to belong to class I with a class-conditional
probabilities of 1.0, whereas the third conformers had

probabilities of 0.41, 0.59, 0.23 for belonging to classes I, II,
and III, respectively. According to maximum p(x � classi)
rule, this conformer was assigned to class II. Hence, two of
the three conformers of the chemical were classified to
belong to class I, and one ± to class II. Eventually, the
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Table 2. Classification error for the COREPA-M decision trees for AhR binding affinity as listed in the confusion matrices for chemicals
and conformers. The COREPA models are obtained without (a, b) and with (c, d) applying the ™keep conformaters together∫
classification schemes. Sensitivity and False positive predictability of models (S, Scross and FP, FPcross, respectively) are listed when all
chemicals are used in correlation sample (Tables 2a and 2c, respectively) and after 4-fold cross validation (Tables 2b and 2d, respectively).
Models are derived with n-parameters at a node, posteriori probability threshold, P%, Chi sq� on, Hellinger Distance for selecting best
parameters and without (a) and with (b) using ™keep together∫ classification schemes.

a

n P% Chemicals (Confision Matrix) Conformers (Confision Matrix) Number

Class I Class II ClassIII Summary Class I Class II ClassIII Summary nodes/leafs
Error% Error% Error% %Corr/Incorr Error% Error% Error% %Corr/Incorr

1 50 0 27 12 80/20 0 12 9 90/10 6/7
70 0 27 12 80/20 0 12 9 90/10 6/7

2 50 10 20 0 82/18 10 11 0 89/11 8/9
70 26 0 0 94/6 26 0 0 96/4 9/10

3 50 5.2 5.2 0 95/5 5.2 3 0 97/3 7/8
70 16 5 0 92/8 16 3 0 95/5 9/10

b

n P% Chemicals (Probabilities) Chemicals (Probabilities)Cross-validation

Class I ClassII ClassIII Class I ClassII ClassIII
S/FP S/FP S/FP S/FP S/FP S/FP

1 50 100/25 72/0 100/0 68/20 78/23 100/0
70 100/25 72/0 100/0 90/20 78/12 86/0

2 50 90/20 77/11 86/1 53/1 98/42 71/0
70 74/0 100/11 100/0 68/6 88/15 86/2.4

3 50 95/4 95/4 100/0 79/3 95/19 86/1.2
70 84/1.4 97/8 100/0 79/4 95/19 71/0

c

n P% Chemicals (Confision Matrix) Conformers (Confision Matrix) Number

Class I Class II ClassIII Summary Class I Class II ClassIII Summary nodes/leafs
Error% Error% Error% %Corr/Incorr Error% Error% Error% %Corr/Incorr

1 50 0 28 0 80/20 0 12 0 90/10 6/7
70 5 9 0 92/8 5 4 0 96/4 11/12

2 50 10 12 0 89/11 10 5 0 95/5 10/11
70 5 12 0 90/10 5 5 0 95/5 10/11

3 50 0 19 0 87/13 0 7 0 94/6 8/9
70 42 3 0 89/11 42 1 0 95/5 10/11

d

n P% Chemicals (Probabilities) Chemicals (Probabilities)Cross-validation

Class I ClassII ClassIII Class I ClassII ClassIII
S/FP S/FP S/FP S/FP S/FP S/FP

1 50 100/25 72/0 100/0 79/14 84/15 100/0
70 95/4 91/0 100/0 90/18 80/4 86/0

2 50 89/8 88/8 100/2 84/10 88/11 100/1.2
70 95/7 88/4 100/0 79/4 84/15 100/0

3 50 100/17 81/8 71/0 79/0 100/19 86/0
70 58/0 97/15 86/0 89/13 86/12 71/0
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chemical was classified to belong to class I because has a
conformer whose class-conditional probability to belong to
class I (p(x � classI)� 1) was higher than the probability of
the other conformer to belong to class II (p(x � classII)�
0.59). Thus, the probabilistic nature of the COREPA
method allows introducing the notion of continuous behav-
iour of chemicals. A chemical may be classified predom-
inantly in one of the activity classes, and at the same time
have finite or nearly equal probabilities of belonging to
other classes of biologically active chemicals.
Returning now to the use of COREPA-M decision trees

to provide insight into the mechanism involved, Figure 7
illustrates a progression of descriptors that discriminate the
assigned abitrary classes. Planarity, Amax and Dmax were
the most important discriminators and the one-dimensional
COREPA patterns for these descriptors at the subsequent
nodes are presented in Figure 6a ± 6c, respectively. The data
show that the most active chemicals (class III) have
maximum class-conditional probability at the lowest range
of planarity index (i.e., highest planarity, Figure 7a), and
highest delocalizabilities ± A_max (Figure 7b) and D_max
(Figure 7c). This derived result from COREPA-M is con-
sistent with the literature that the AhR is flat and with our
earlier finding that superimposing the ™planar conforma-
tion∫ constraint on the calculation of stereoelectronic
descriptors in developing the QSAR for AhR. Moreover,
the COREPA analysis placed a descriptor of molecular
shape as the first order parameter and then found realistic
electronic descriptors that decriminated at lower levels in
the tree. If this finding hold for other biological receptors, it
will provide an objective steric filter for chemicals that are
flexible enough to conform to the steric requirements of a
binding site.

The parameters with highest importance forAhR activity
are planarity, E_gap, D_max and CPSAs (VdWSurf_PN-
SA1). The parameters selected by the system are in
accordance with the experimentally established stacking
type of interaction of ligands with AhR. This interaction is
conditioned by a charge transfer process, which could be
determined by the energy of frontier orbitals or their
difference (E_gap), electron delocalizability (D_max) and
charged surfaces (partially negative surface area,
VdWSurf_PNSA1). Logically, these parameters are less
important (i.e., have lowerDescriptorsQualityIv values) for
classes II and III that consist of chemicals with lower binding
affinity to AhR (Table 3).
To summarize the information derived from COREPA-

M, the program provides: 1) a decision tree wherein each
node illustrates the distribution pattern by visualizing the
class-conditional probabilities, p(x � classi) in the descriptor
space formed by the best parameters. The user has access to
all chemicals and their conformers classified at certain node
or leaf of the treewhich canbe savedas a binary file andused
for chemical screening purposes; 2) a confusion matrix for
all chemicals with information about actual and predicted
classifications for the classification; 3) a list of most
discriminating molecular descriptors, each of which is
evaluated according to the calculated Hellinger distances
for discrimination of all classes (see Table 3); 4) a summary
table with class-conditional probabilities, p(x � classi), for
each conformers across classes, andultimate classificationof
conformers based on calculated posteriori probability
p(classi � x) and Bayes classification rule; 5) a summary table
with distribution of conformers of the chemicals in classes
according to calculated posteriori probability p(classi � x)
and Bayes classification rule; and 6) a summary table with
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Table 3. Descriptors in COREPA-M model for AhR binding affinity listed with their importance for discriminating three classes of
chemicals as assessed by Hellinger distance; i.e., DescriptorsQuality as defined by Eq. 13.

Class III Class II Class I

Descriptors 7� log(1/EC50)� 10 4� log(1/EC50)� 7 1� log(1/EC50)� 4
PLANARITY 1.1 0.54 0.39
E GAP 0.92 0.16 0.34
VdWSurf PNSA1 0.7 0.2 0.32
D max 0.67 0.38 0.56
B ord max 0.61 0.28 0.44
VOLUME POLARIZAB. 0.6 0.39 0.8
B ord min 0.5 0.27 0.56
A max 0.39 0.24 0.61
Log(Kow) 0.37 0.14 0.71
VdWSurf PPSA1 0.37 0.19 0.68
DIPOLE MOMENT 0.34 0.21 0.26
VdWSurf PPSA3 0.34 0.23 0.58
Energy LUMO 0.28 0.08 0.43
Diameff 0.25 0.32 0.28
VdWSurf PNSA3 0.21 0.33 0.38
Q max 0.21 0.7 0.29
E HOMO 0.15 0.18 0.1
ELECTRONEGATIVITY 0.08 0.11 0.36
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Figure 7. One-dimensional COREPA patterns across the path of the decision tree (the upper highlighted branch, in Fig. 5) providing
classification of two most active classes (II and III). The patterns are described as distribution of class-conditional probabilities, p(x �
classi), and posteriori probabilities p(classi � x) across Planarity (a), Amax (b) and Dmax (c), associated with the subsequent nodes.
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highest class-conditional probabilities, p(x � classi), which
conformers of the chemicals have reached for each class and
classification of chemicals according to these maximal p(x �
classi) (see Table 1).

5 Conclusions

The evolution of methods to quantify chemical structure
includes the inclusion of many conformations for individual
chemicals and the need for computerized systems tomanage
the distributions of molecular descriptors associated with
the conformers. Identifying common reactivity patterns
(COREPA) has been originally introduced for one mo-
lecular descriptor, this paper introduces a multi-dimen-
sional formulation of the COREPA method. The method
was evaluated using binding data for a receptor of known
shape and for which charge-transfer interaction are impor-
tant. The new formulation increased discrimination power
of themethod and allowed automated building of a decision
tree using Bayesian decision rules for classification of
biologically similar chemicals. The set of best discriminating
parameters and class to split at a node are defined by
evaluating similarity between conformer distributions of
chemicals. Planarity at the AhR was found to be the most
important descriptor for binding to this flat receptor.
Stereoelectronic parameters related to charge-transfer
interactions were predicters of binding with classes. The
automated building of decision tree for classification of
chemicals provided opportunity for a detailed statistical
evaluation of derived model. N-fold cross validation is used
for that purpose. The probabilistic nature of the COREPA
classification supports the concept of a more continuous
behaviour of chemicals because some conformers of the
same chemical can be different classes.
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