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Abstract

Two dynamic techniques recently developed to account for conformational flexibility of chemicals in three-dimensional (3D)

quantitative structure–activity relationships (QSARs) are presented. A basic assumption underlying both methods is that

chemical behavior in complex biological systems is context-dependent. A molecule can exist and interact in a variety of

conformations. Selection of the appropriate ‘active’ conformer(s) in QSAR studies is a task as important as the selection of

appropriate molecular parameters because multiple conformers of one chemical can differ significantly in the value of their

calculated molecular descriptors. In the dynamic approaches for selection of active conformers in correlative QSAR studies,

biological activity is modeled as a function of molecular descriptors derived from specifically selected active conformers, rather

than as a property derived from the lowest-energy gas-phase conformer. In a recent pattern recognition approach all

energetically reasonable conformers are taken into account to derive the common reactivity pattern (COREPA) of structurally

diverse but biologically similar chemicals (and ultimately conformers). The COREPA method is based on the assumption that

chemicals which elicit similar biological behavior through a common mechanism of interaction with the biological ‘receptor’ of

interest, should possess a commonality in the values of their steric and/or electronic parameters, thus yielding a COREPA.

Applicability of these techniques, based on the same underlying principles, is illustrated. In addition to the impact of

conformational flexibility of chemicals in 3D QSAR models, the applicability of various molecular descriptors is discussed. The

proposed classification could be useful as guidance for selection of appropriate molecular parameters for modeling a variety of

toxicity endpoints according to the specificity of the underlying interactions.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantitative structure – activity relationships

(QSARs or more general SARs) are based on a

fundamental principle in chemistry, that chemical

properties and the biological behavior elicited is

a direct result of chemical structure. Once established,

such SARs can be used to predict the activity of

untested chemicals. Two conceptually different

approaches have been implemented in SAR studies.

In correlative approaches, the variation in molecular

structure (assessed quantitatively by molecular

descriptors) within a congeneric series of compounds

is assumed correlated with the observed change in the

endpoint under study (e.g. toxicity), thus providing
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insight as to the molecular mechanisms controlling

the modeled endpoint. On the other hand, pattern

recognition approaches attempt to identify common

stereoelectronic characteristics among structures that

elicit similar biological activity. The recognized

common structural characteristics can then be

employed to screen large and structurally hetero-

geneous databases for identification of potentially

active chemicals eliciting toxicity by the same

mechanism of action. Both SAR approaches are

successfully employed only if the modeled chemical

or biological endpoint is a result of a common

interaction mechanism.

Because chemical interactions are three-dimen-

sional (3D) events, QSARs often depend on the 3D

molecular models adopted for the chemicals under

study. This certainly applies to receptor-site mapping

models dealing directly with molecular shapes and

fields. Correlative QSARs may also be influenced

indirectly when employing electronic quantum-

chemical descriptors that generally depend on 3D

structure. The conventional 3D QSAR methods are

based on the current ‘one chemical–one structure–

one parameter value’ dogma (Scheme 1) where a

single conformer characterized by point values of its

parameters is used to represent a chemical under

study, while all others are ignored. In the best case, the

representative conformer is the one of lowest potential

energy for the isolated molecule, or the one observed

in crystal phase. Typically, one computationally

derived low energy conformer is used, resulting in

appreciable uncertainty due to the diversity of

algorithms available for 2D–3D structure migration

which provide different 3D structures from the same

molecular connectivity.

To address the issue of selection of active

conformers in QSAR studies with flexible molecules

and complex biological interactions, Mekenyan et al.

[1] introduced the ‘dynamic’ QSAR approach. The

name dynamic was used to describe attempts at

mimicing the infinite conformational space of a

chemical by using a set of static (discrete) isomers.

The approach assumes that in complex environments,

such as biological tissues and fluids, chemicals can

exist in conformations other than the lowest energy

gas-phase state. The use of the lowest energy

conformer in SAR studies is common, but inappropri-

ate, because in complex systems such as biological

tissues and fluids chemicals are likely to exist in a

variety of conformational states. In fact the low-

energy gas-phase conformation might be the least

likely to interact with macromolecules [2], with

solvation and binding interactions capable of com-

pensating for energy differences among the confor-

mers of a chemical [1,3 – 8]. Thus, at the

macromolecular binding sites, conformational states

can be populated which are substantially different

than the isolated, lowest-energy or crystal-phase

conformation. This holds true especially for

enzyme-mediated reactions where enzyme-induced

distortions in direction of the transition state can drive

the molecules out of a local potential energy minima.

Employed in correlative SAR studies, the dynamic

method was used for selection of active conformers.

Using this approach biological activity is modeled as a

function of molecular descriptors derived from specifi-

cally selected active conformers [1,3,4,6]. The

inclusion of all conformers as structural representatives

of the chemicals in the correlation samples was also

found to be inappropriate because of potential statisti-

cal biases that could result due to differences in

conformational flexibility of chemicals and thus

number of conformers generated for each structure [8].

In pattern recognition studies the ad hoc selection

of active conformers is hampered by the structural

heterogeneity of the chemicals under study. For that

reason, the distribution of all energetically reason-

able conformations is analyzed when similarity

between molecules is assessed. This approach was

taken in developing a new pattern-recognition

method, which is able to determine the common

reactivity pattern (COREPA) for structurally diverse

chemicals exerting high biological effect viaScheme 1.

O. Mekenyan et al. / Journal of Molecular Structure (Theochem) 622 (2003) 147–165148



the same mode of action [9,10]. It is assumed that

chemicals which elicit similar biological behavior

through a common mode of action should possess a

commonality in their stereoelectronic (reactivity)

pattern. Elucidation of this pattern requires examin-

ation of the conformational flexibility of the

compounds in an attempt to reveal areas in the

multidimensional descriptor space which are most

populated by the conformers of the biologically

active molecules and least populated by conformers

of inactive chemicals, simultaneously (see also Ref.

[6]). COREPA circumvents the problems of con-

former alignment and selection, and initial assump-

tions concerning specific atoms/fragments in a

pharmacophore are not obligatory. The method

defines the COREPA by analyzing conformational

distribution of chemicals across global and local

reactivity parameter(s) potentially associated with

the specific biological endpoint under study.

Examples of the QSAR techniques developed

utilizing principles described above are presented in

next sections.

2. Fuzzy logic and 3D structure modeling

Within the single (lowest energy) conformer

representation of chemical structure, the corre-

sponding geometric and electronic parameters

have single, discrete point values. Such truth-values

and the associated logic have been designated as

crisp in the fuzzy logic theory [11,12]. These

parameters are subject to classical prepositional

logic, based on the two-value principle. According

to this principle, every preposition is either true or

false and can be treated as Boolean truth-values of

classical logic. In other words, one chemical either

can or cannot possess specific parameter values.

This classical logic, however, does not match the

real world due to conformational flexibility of

chemicals and the fact that the lowest energy

conformer is not necessarily the active one. Which

conformer is active is context-dependent, influenced

by the biological macromolecules and biochemical

environment present, and therefore the specificity

of the interaction partners and reaction media could

significantly influence the choice of active con-

former(s).

In a recent study, we have shown that even

stereochemically rigid steroids are conformationally

flexible within the retained stereochemistry of the

natural enantiomer [9,13]. The range of 10.6 kcal/mol

for formation enthalpies (within AM1 Hamiltonian)

was found to be within the range of experimental

receptor binding energies for these molecules (10–

20 kcal/mol). Additionally, the conformer intercon-

version barrier was found to be no greater than

10.9 kcal/mol and thus comparable with the confor-

mer formation enthalpies. Steroid conformer inter-

conversions were therefore found to be feasible

kinetically, as well as thermodynamically. Thus,

conformational flexibility of these hormones should

be taken into account when receptor or pharmaco-

phore mapping approaches are employed [13].

A conclusion of the above analysis is that structural

information derived from a single conformer may be

insufficient for a complete structural description of a

chemical and could cause a subsequent failure in SAR

analysis. It appears that the classical prepositional

logic of two options, namely true and false, when

associated with a single geometrical representation of

a chemical needs to be replaced by the fuzzy logic of

an infinite set of geometries describing conformation-

al space of molecules. In order to overcome the

infinity problem, however, one could make confor-

mational space discrete using a finite number of

conformers to represent the whole space. Thus, by

analogy with the notion of fuzzy molecular graphs [11,

12], we propose the use of fuzzy chemical structures

where the atoms, bonds and valence angles are

assumed to carry crisp information, whereas the

torsion angles carry fuzzy information. In other

words, when describing conformational space, the

atoms, bonds and valence angles are fixed, thus

forming the static elements of the molecule, whereas

torsion angles are varied, thus forming its flexible

components.

It has been found that conformational flexibility

has significant impact on molecular electronic struc-

ture and associated properties, as has been illustrated,

for example, with several series of androgen and

estrogen receptor ligands [9,10,13–15]. For a given

compound, conformers within the formation enthalpy

range of 20 kcal/mol exhibited significant variation in

potentially relevant electronic descriptors (the

20 kcal/mol threshold for selection of potentially
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active conformers falling within experimental binding

energies). To illustrate the point, conformers of

hydroxyflutamide (again, those conformers within

the energetically reasonable formation enthalpy range

of 20 kcal/mol) had calculated parameter values

spanning over 0.63 eV for ELUMO, a range of

1.09 eV for EHOMO, 0.61 eV for EHOMO – LUMO gap,

and 6.51 D for dipole moment (m ). The conformers of

steroid structures included in the same analysis

spanned somewhat smaller parameter ranges (likely

due to their stereochemical rigidity which was

maintained during conformer generation), but were

also noteworthy. Conformers of methyltriendone had

a range of 0.30 eV for ELUMO, 0.18 eV for EHOMO,

0.46 eV for EHOMO – LUMO, and 1.60 D for m. The

observation that relatively small energy differences

between conformers of a chemical can yield signifi-

cant variation in electronic structure highlights the

necessity to represent the molecular parameter values

as finite ranges for each chemical, instead of single

point values. Hence, the application of fuzzy logic in

the handling of chemical structures requires the one

chemical–one structure–one parameter value prin-

ciple to be modified to a ‘one chemical–finite set of

structures– range of parameter values’ principle

(Scheme 1). Currently in textbooks, catalogues, and

databases, the property values listed are for one

conformer of a chemical, usually in a specific solution

or immobilized in a solid phase. Significant amounts

of structural and property (activity) information are

therefore missing, due to the lack of experimental and/

or theoretical studies on the relationship of confor-

mational change and associated variability in par-

ameter values.

It should also be noted that true values in fuzzy

logic, i.e. the parameter values corresponding to

conformationally multiplied chemicals, should be

considered as possibility values rather than as

stochastic. The possibility character is derived from

the assumption that active conformers are reaction

and environment specific, and that the selection of

conformers in structure–activity studies should be

considered in the context of the specificity of the

interaction rather than as a result of random choice.

There are many attempts to solve the issue of

conformational freedom of chemicals in QSAR

studies for drug design and for screening of 3D

structure databases. In the former case, the traditional

QSAR packages provide conformational analysis in

an attempt to solve the problem of generating the

lowest energy conformer. However, as mentioned

previously, the selection of active conformers in

QSAR analysis is as important as the selection of

significant molecular descriptors. Similarly, the use of

a rigid search, based on single conformer represen-

tation of chemicals is likely to fail to identify

structures that, due to their flexibility, could adopt

the conformation of a query pharmacophore. The

alternative flexible search using the query to direct the

conformational changes needed to find a match are

based on distance geometry [16,17], systematic

search [18–20], random-search [21], genetic [22,

23], and directed tweak [24] algorithms. These

algorithms for searching conformational space are

discussed and compared by Clark et al. [25]. For 3D

flexible searching, Murrall and Davies [26] have

suggested the direct application of distance range

screens with user defined tolerances.

Newly developed modeling approaches and associ-

ated techniques allowing interpretation of fuzzy

molecular structure are presented in Section 3,

with examples of QSAR applications discussed in

Section 4.

3. Dynamic techniques for 3D-structure
manipulation in QSAR analysis

The main feature of the 3D QSAR approaches

presented in this work is the consideration of

conformational flexibility of chemicals. Techniques

for exploring conformational space of chemicals are

included as an initial step in the development of 3D

QSARs. Two algorithms have been developed within

the OASIS software system to handle conformer

generation and evaluation for QSAR application.

Following is a short description of these algorithms,

however, readers are encouraged to consult the

respective references for a detailed presentation of

the approaches.

3.1. Algorithms for conformer generation

3.1.1. Systematic search by the 3DGEN algorithm

The 3DGEN technique [27] is a combinatorial

procedure for systematic search of conformational
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space. It initiates from molecular topology and

generates all conformers in the context of steric

constraints (e.g. distances between non-bonded

atoms, ring-closure limits, torsional resolution) and

expert rules (e.g. likelihood of intramolecular hydro-

gen bonds, cis/trans or L/D isomers). A unique aspect

of the approach involves the initial propagation of an

acyclic 3D model of the molecular skeleton. The

construction of this skeleton initiates from a specified

atom of the molecule based on its topochemical

ranking (a ranking based on connectivity and atom

type). A bond ‘under construction’ in this acyclic

model is positioned in space by using a recursive

procedure based on the 3D information of previously

established bonds. This includes the atom type and

hybridization of the atoms incident to the bond being

constructed as well as the two atoms associated with

the previously completed bond. Cyclic fragments

incident to the bond being constructed are also

addressed. Bond lengths and valence angles are

determined through a molecular mechanics parame-

terization. During the propagation of the acyclic

model, cyclic character is gained through defined

ring-closure constraints. Rotamers associated with all

torsional angles that meet hybridization and specified

geometric constraints are retained. In summary, the

approach incorporates the conformational flexibility

of saturated cyclic molecular fragments, as opposed to

other techniques, that explore conformational space

formed by rotations around acyclic single bonds only.

With strained molecules the possible violation of

imposed geometric constraints are corrected with a

strain-relief procedure (pseudo molecular mechanics,

PMM) based on a truncated force field energy-like

function, where the electrostatic terms are omitted

[27]. In fact, the PMM force field involves additive

interatomic interactions for bond lengths, valence

angles, dihedral angles, out-of-plane bends of sp2

conjugated sites and Lennard-Jones repulsions of non-

bonded sites. The basic form and parameterization of

the interatomic interactions mentioned above was

taken from the Chem-X force field [28,29]. Geometry

optimization is further completed by quantum-chemi-

cal methods. Usually, MOPAC 93 [30,31] is employed

by making use of the AM1 Hamiltonian. Next, the

conformers are screened to eliminate those, whose

heat of formation, DHf
0, is greater from the DHf

0

associated with the conformer with absolute energy

minimum by user defined threshold. Usually, 20 kcal/

mol (or 15 kcal/mol) threshold is employed based on

experimental evidence that the free energy of binding

to some steroid hormones is in the range of 210 to

220 kcal/mol [7,32,33], which would provide the

necessary energy to elevate conformers from the

low(est) energy state during binding. Subsequently,

conformational degeneracy, due to molecular sym-

metry and geometry convergence is detected within a

user defined torsion angle resolution.

3.1.2. Genetic algorithm for conformational coverage

A new approach for coverage of chemical

conformational space by a limited number of

conformers [34] was developed to evaluate confor-

mational flexibility of molecules. Instead of using

the systematic search whose time-complexity

increases exponentially with degrees of freedom, a

genetic algorithm (GA) is employed to minimize

3D similarity among the generated conformers.

This makes the problem computationally feasible

even for large, flexible molecules. The 3D

similarity of a pair of conformers is assumed

reciprocal to the root-mean-square (RMS) distance

between identical atomic sites, using an alignment

which minimizes this distance. Thus, in contrast to

traditional GA, the fitness of a conformer is not

quantified individually, but only in conjunction

with the population it belongs to. The approach

handles the following stereochemical and confor-

mational degrees of freedom: rotation around

acyclic single and double bonds, inversion of

stereocenters, flip of free corners in saturated

rings, reflection of pyramids on the junction of

two or three saturated rings. The latter two were

particularly introduced to encompass structural

diversity of polycyclic structures. However, they

generally affect valence angles and can be

restricted up to a certain level of severity of such

changes. Stereochemical modifications are totally/

selectively disabled when the stereochemistry is

exactly/partially specified on input. For the chemi-

cals under study, the stereochemistry of the active

enantiomer is maintained during conformer gener-

ation. The reproducibility and robustness of GA

runs, and subsequent density of coverage of

conformational space can be controlled by the

ratio between parents and children.
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Each of the generated conformations is submitted

to geometry optimization procedure as described in

Section 3.1.1.

3.2. Classification of molecular descriptors in 3D

QSARs

Besides selection of active conformers to represent

chemicals in 3D QSAR studies, one needs to assess

the molecular geometric and electronic structure as

well as the physicochemical parameters of the

chemicals under investigation. The selection of

molecular descriptors is not a trivial task. Usually,

this problem is addressed by applying robust statisti-

cal tools in an attempt to avoid the frequently faced

conflict between a small number of observations and a

large number of molecular parameters in the descrip-

tor pool. The latter could result in chance correlations

according to the criteria of Topliss and Edwards [35].

Conventionally 3:1 or 5:1 ratio between observations

and molecular parameters is assumed as optimal.

However, it should be emphasized that often the

number of modeling parameters evaluated in this ratio

is erroneously counted from the ultimate model, and

not reflective of the initial data matrix.

Traditionally only statistical tools are relied upon

to reduce the cardinality of descriptors in the initial

data matrix. Our belief is, however, that informal

assessments should be used first to reduce this

cardinality, with statistical tools applied afterwards.

These informal assessments should be based on

known, or hypothesized, mechanisms of chemical–

biological interaction, which would allow elimination

of molecular descriptors unlikely to be associated

with the endpoint under study, i.e. would eliminate the

‘noise’ in the descriptor pool. To accomplish this we

propose a classification of toxic endpoints and

molecular descriptors according to the specificity of

the associated interaction mechanism (Fig. 1). The

core of this classification scheme is the segregation of

chemical–biological interactions prerequisite to a

biological effect into three types: non-specific,

specific and receptor-mediated. The interactions

loosely termed ‘non-specific’ include chemical pro-

cesses such as perfusion or diffusion-controlled

chemical partitioning across biological membranes

leading to predictable endpoints such as chemical

bioconcentration (of non-metabolizable compounds)

[36] aquatic toxicity mechanisms such as non-polar

narcosis [37], etc. Somewhat more ‘specific’ inter-

actions might include chemical–biological inter-

actions leading to aquatic acute toxicity from

exposure to reactive (electrophile/proelectrophile)

chemicals [37], many of the reactions leading to

mutations, chemical alterations accomplished during

microbial biodegradation, etc. Finally, we have

Fig. 1. Classification of toxic endpoints according to specificity of underlying interaction mechanisms and associated molecular descriptors.
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considered ‘receptor-mediated’ interactions that

induce subsequent conformational change in receptor

proteins and are associated with endpoints such as

gene activation, cell proliferation, etc.

The chemical processes associated with non-

specific interactions include reversible processes

which may be associated with underlying weak

electrostatic (Van der Waals) forces, and include

interactions during which chemical bonding in

molecules is not irreversibly altered. As a result,

these non-specific interactions yield reversible toxic

effects. Note that these are not strict categorizations,

but represent a continuum of chemical–biochemical

interactions. For instance, weak interactions (Van der

Waals, H-bonding) also underlie reversible receptor-

mediated events. Moreover, if we take into account

the interacting targets (e.g. nucleophilic sites targeted

by electrophilic chemicals producing acute aquatic

reactive toxicity), these effects can have pronounced

specificity. A specific interaction, for example,

includes interactions involving formation of covalent

bonds. In contrast to electrostatic effects, these

interactions have specific character due to direction-

ality (i.e. well-defined orientation) of covalent bonds.

The bond rearrangements in these interactions

produce irreversible toxic effects. The receptor-

mediated interactions have been elegantly described

as reversible ligand–receptor–effector interactions

with conformationally flexible ligands binding with

the receptor and inducing conformational change such

that the new complex allows interaction with effector

sites [38]. The site–site binding interactions between

reaction centers are weak, i.e. with non-specific

character in accordance with underlying chemical

(electrostatic) forces.

The molecular descriptors that are calculable from

chemical structure assess different aspects of molecu-

lar structure and hence ability of chemicals to take

part in different interactions. For example, topological

indices describe non-metric geometry and therefore

could describe non-specific interactions and related

endpoints, such as chemical penetration (diffusion),

acute aquatic non-polar narcosis, etc. The same holds

to some extent for global electronic indices, which in

addition to the non-specific interactions, encompass

the area of specific interactions as well, strongly

dependent upon molecular geometry. Hence,

these molecular descriptors should be considered in

developing QSARs for mutagenicity, aquatic reactive

toxicity, etc. The global electronic descriptors also

extend to the realm of receptor-mediated interactions,

and have been found useful in quantifying the global

reactivity of receptor ligands. Local electronic

reactivity parameters describe the ability of atomic

sites and fragments to take part mostly in specific

interactions dependent upon the reactive groups

present, and subsequently should be used for model-

ing toxic endpoints such as reactive acute toxicity,

biodegradation, receptor mediated effects, etc. These

parameters, however, could also be used for assessing

propensity of chemicals to take part in weak

interactions; hence, they are also included in the list

of parameters available to describe non-specific

interactions. Finally, specific steric parameters, such

as distances between fragments and/or atomic sites

have also shown to be critically important for deriving

mechanistically reasonable models for receptor-

mediated effects.

The list of parameters used routinely in OASIS

system [39] includes:

(i) Non-specific molecular descriptors, such as

topological indices;

(ii) Specific electronic descriptors: Global electronic

parameters such as heat of formation (DHf),

LUMO energy (ELUMO), HOMO energy

(EHOMO), HOMO–LUMO energy gap (Egap),

electronegativity (EN); dipole moment (m ),

volume polarizability (VolP), degree of stretch-

ing or compactness (quantified as sum of

interatomic steric distances, GW), greatest

interatomic distance (Lmax), planarity (normal-

ized sum of torsion angles in a molecule) are

included, here. VoIP is defined as a sum of

atomic self-polarizabilities, and describe the

averaged ability of a compound to change

electron density as its atoms during chemical

interactions (lower VoIP values reflect higher

charge localizations and more polarizable, i.e.

less lipophilic are molecules). Van der Waals

surface, solvent accessible surface (SAS1.5;

assuming water as a solvent) calculated by

making use of Connoly algorithm [40] and

charged partial surface areas (CPSAs) as intro-

duced in Ref. [41] by Stanton and Jurs

could be included in the group of specific

O. Mekenyan et al. / Journal of Molecular Structure (Theochem) 622 (2003) 147–165 153



physicochemical parameters.

Local electronic descriptors include atomic

charges (qi), frontier atomic charges (f HOMO
i and

f LUMO
i ), donor and acceptor superdelocalizabil-

ities (SE
i and SN

i ), and self-atomic polarizability

(pi), where i denotes a given atomic site of the

molecule.

(iii) Specific steric descriptors, such as the steric

distance between atoms i and j (dij).

All molecular descriptors described above except

topological indices, could be used for deriving 3D

QSAR.

3.3. Selection of active conformers in correlative

QSAR studies

According to basic assumptions, in complex

reaction environments or with solvents of different

polarity one should expect that a molecule can

populate different conformational states depending

on the particular interaction step, such as tissue

partitioning, substrate–receptor complex formation,

etc. [1]. Moreover, the specificity of the processes

allows for particular conformers to be active for the

different endpoints under investigation. The identifi-

cation of those conformers, however, is a difficult

problem, especially when the equilibrium among

conformational states is easily attained. At the present

time there is no general approach identifying the ‘real’

conformers among computed ones.

The method combines a conformation generation

routine with a module for conformer screening. It

begins with the generation of an exhaustive set of

conformers and allows one to select conformers based

on the problem being addressed, by using a hierarch-

ical set of screening rules. Thus, one selects a specific

conformer among the finite set of isomers describing

the fuzzy molecular structure. The screening stage is

based on the stereoelectronic molecular structure of

selected conformers assessed by quantum chemical

methods. Then, in an interactive mode, the user has

the opportunity to introduce working hypotheses in

the selection of conformers. As was mentioned, great

variation in stereoelectronic indices among different

conformers of a given molecule often results, which

again points to the conclusion that the selection of

active conformers appears to be as crucial for QSAR

analysis as the selection of suitable molecular

descriptors.

Conformers can be selected based on their

distribution across specific physico-chemical and/or

stereoelectronic parameters. The conformer distri-

bution (number of conformers belonging to a certain

range of parameter values) is displayed as a selected

number of parameter windows, evenly dividing the

whole parameter range. There are a variety of

selection schemes, which can be applied after

examining the conformer distributions, providing:

(i) Prevailing values of the parameter of interest

(select conformers belonging to the most popu-

lated window of the relevant electronic or

geometric property).

(ii) Extreme values of the parameters of interest

(select conformers providing the values of

maximum or minimum relevant molecular prop-

erty). Thus for example, one can select lowest

energy conformers having minimum values of

heats of formation. One can also obtain the

conformers with the highest electron acceptor

(donor) properties, taking those having minimum

(maximum) values of ELUMO (EHOMO) or

maximum (minimum) values of acceptor

(donor) superdelocalizabilities or the respective

frontier charges at specific atomic sites.

(iii) Certain Boltzmann-weighted populations

according to

Pi½%� ¼ exp½2ðDHi
f 2 DH1

f Þ=RT�=

Sn exp½2ðDHi
f 2 DH1

f Þ=RT�100 ð1Þ

with P i[%] denoting the percent level of

population of the conformation i with heat of

formation DHi
f at 298 K (as quantified by AM1).

(iv) Descriptor values weighted according to con-

former-specific values for each compound.

Different averaging methods including arith-

metic, geometric, quadratic, and harmonic

methods are provided.

3.4. COREPA method

COREPA is a pattern recognition type of QSAR

approach providing visualization and interpretation

of reactivity pattern of biologically similar
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chemicals [9,10]. The approach is based on the

premise that the similar biological behavior of

topologically dissimilar chemicals is due to a

commonality in their stereoelectronic (3D) struc-

tures, as described by common ranges of selected

stereoelectronic descriptors. The core of the

approach is the procedure for evaluation of 3D

similarity between chemicals accounting for their

conformational flexibility (referred to as the

“dynamic” 3D similarity method in Mekenyan

et al. [42]). The commonly used 3D similarity

methods compare 3D structural patterns of fixed

molecular geometries and do not account for

structural differences due to conformational flexi-

bility of the molecules. Thus, two conformers each

representing compared molecules could deviate

significantly in their stereoelectronic structure in

terms of reactivity parameter values whereas other

conformers of both molecules could populate a

common range of variation for those parameters.

To employ the COREPA method, conformer

generation routines (Sections 3.1 and 3.2) are used

to establish conformers of each chemical within a

certain energy range of the lowest energy structure.

The set of conformers of each chemical could be

considered as statistical ensembles that, in turn, could

impose weighing of the associated distributions (e.g.

according to the Boltzman’s statistics). Presently,

however, we are reluctant to overestimate the gas-

phase energetic assessment of conformers accounting

for the complexity of biological interactions.

All conformers of a given chemical are plotted

across a molecular descriptor axis, thus forming a

discrete distribution for the chemical relative to the

selected descriptor. For the global molecular

descriptors, each conformer is represented by single

point value of the parameter. For atomic par-

ameters, several descriptor values associated with

various local sites (atoms) of the conformer are

allocated across the parameter axis. Each parameter

point value is considered to be a midpoint of

continuous probability distribution. Lorenz distri-

bution has been used in the original COREPA

implementation [10]

fðxÞ ¼

G
2

� �2

G
2

� �2
þðx2 x?Þ

2
G ð2Þ

where G is the half-width of the distribution

function around the probability maxima. The higher

the values of G the flatter are the density function

wðxÞ: Various probabilistic functions are in use in

the present version of COREPA, including but not

limited to:

Gaussian distribution:

fðxÞ ¼
1

h
ffiffiffiffi
2p

p e2ðx2x0Þ
2=2h2

ð3Þ

Laplace distribution:

fðxÞ ¼ 1
2

e2x
: ð4Þ

The conformer distribution of a chemical is obtained

as a normalized sum of these probability distributions.

The normalization is performed by dividing the sum

of individual distributions by the number of con-

formers. This normalization ensures the area of the

obtained distribution to be unified, and hence the

resulting distribution function to be considered as a

probability density. Thus, for a sample of descriptor

values x1; x2;…; xn associated with a chemical a

probability density function is constructed as

pðxÞ ¼
1

nh

Xn

i¼1

f
x 2 xi

h

� �
ð5Þ

known as the Kernel density estimation, where wðxÞ is

any probability density function (called ‘kernel’) for

which

ð
fðxÞdx ¼ 1;

ð
fðxÞdx ¼ 0 ð6Þ

and h is a smoothing parameter defining the smooth-

ness (wideness) of individual probability functions

(G ø h; for Lorenz density function). Apparently, the

probability density estimation wðxÞ and resulting pðxÞ

depend on the value of the smoothing parameter h. The

higher the h values the flatter are wðxÞ and pðxÞ: The

relation between kernels wðxÞ and resulting probability

density function pðxÞ constructed as a sum of the

Kernel density estimation is shown in Fig. 2.

Different methods could be used to define the

optimal h values. Traditionally, parametric density

estimations are employed when the type of distri-

bution is predetermined and the fitting attempts to

determine the parameters of an already specified

distribution. For example, if a Gaussian probability
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density function is specified the fitting is aimed at

determining the mean and variance of the data set.

The obvious shortcoming of this approach is the need

for proper specification of the density function. Thus,

the smoothing parameter G associated with the Lorenz

density function was defined empirically in the

original COREPA implementation as 0.1–0.125 of

the variation range for global molecular parameters,

and 0.01–0.05 of the variation for local descriptors

[10,14,15,43]. The non-parametric density estimation

used in the present version of COREPA is the Kernel

density estimation [44–46]. Here, the smoothing

parameter can be determined using cross-validation

or other available algorithms [47]. In COREPA, the h

value is optimized by empirical approximation of data

points, as specified in Ref. [47], according to equation

h ¼ 3:5sn21=3 ð7Þ

where s is the deviation over the data set points and n

is the cardinality of the data set.

Fast calculation of kernel density is available

through the use of fast Fourier transform [47].

In the original COREPA implementation, the

probability density function could also be constructed

as a product of Kernel probability distributions:

rðxÞ ¼
1

nh

Yn

i21

f
x 2 xi

h

� �
: ð8Þ

A variation of the Kernel density formula is used to

account for conformer multiplicity of chemicals, in

COREPA:

aij ¼
pðC

si

j Þ

Nij

¼
e2DEj=RT

k
XN

j¼1
e2DEk =RT

ð9Þ

pðx\classmÞ ¼
1

Mm

XMm

i¼1

XRi

j¼1

XNij

k¼1

aij

h
w

x 2 xijk

h

� �
ð10Þ

where Mm is the number of chemicals in class m

(chemicals with similar biological effect), Ri is the

number of conformers of the ith chemical, Nij is the

number of parameter point values for the jth

conformer of ith compound. C
Si

j denotes the jth

conformer of ith chemical, and aij is the weighting

coefficient of a conformer (with energy DEj), based on

Boltzman statistics. For the probability density

estimation of a chemical Mm is set to 1.

The probabilistic distribution obtained by Eq. (4) is

referred to as a COREPA of the group of chemicals

across a selected molecular descriptor. Well-defined

or distinct reactivity patterns are observed when the

conformer distributions for the individual chemicals

from the group are harmonized (in phase). In the

present version of COREPA the probabilistic distri-

butions are estimated across single stereoelectronic

parameter. Currently, work on a multidimensional

reactivity patterns is in progress. To date, the effect of

various probabilistic functions on resultant reactivity

patterns has not been studied, but will be included in

further formulations of the approach.

The COREPA algorithm, according to its original

version, consists of three steps. First, two subsets of

chemicals are selected as training sets (step 1). The

first subset consisted of chemicals having activity

above a user-defined high activity threshold. The

second subset includes chemicals having activity

below a predetermined non-active threshold. (The

generalization of the algorithm according to Eq. 9,

allows more than one class of biologically similar

chemicals to be selected and analyzed.) Next, a set of

parameters, associated with biological activity is

established (step 2) by evaluating the degree of

overlap (in %) between the distributions associated

with those thresholds. The parameters are evaluated

based on the normalized sum of similarity indices

between each pair of molecules in the training set

[42]. The cutoffs, i.e. the part of the non-active area in

common with the active pattern maximum can also be

used as a measure of similarity [10]. The stereoelec-

tronic parameters that provide the maximal measure

of similarity among chemicals in the training subsets

of active and inactive chemicals, and least overlap

Fig. 2. Kernel density estimation.
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between overall patterns associated with those subsets

(i.e. most distinct patterns) are assumed to be related

to biological activity and used in the subsequent step

of the algorithm. The COREPAs are described in

terms of molecular descriptor ranges around the

probability maxima of the probability distributions

across relevant molecular descriptors (step 3). The

width of these ranges depends on values of above

discussed smoothing parameter. Ultimately, the gen-

eral reactivity pattern for the biological activity of

concern (SAR model) is obtained as a hierarchically

ordered collection of the parameter ranges determined

from reactivity patterns associated with each relevant

molecular descriptor (see Section 3.5).

The dissimilarity between overall patterns of active

and non-active chemicals, as well as between overall

patterns and chemical-specific distributions, can be

evaluated by an Euclidean distance metric (D ) based

on the squared differences between distribution

densities over the entire range of the parameter

variation. The Euclidean distance metric will also be

used to compare distributions derived from different

chemical training sets or for training sets derived from

different weighting schemes (e.g. different energy

thresholds for conformer selection; see Section 3.1.).

The Euclidean distance metric can also be used to

ascertain the extent to which an overall probability

distribution of active or non-active chemicals is

influenced by a specific chemical(s). In this respect,

the ‘stability’ of a pattern is assessed statistically by a

‘leave-one-out’ procedure. The Euclidean distance

metric is used to iteratively assess differences between

patterns derived for n vs. n 2 1 chemicals in the

training subsets. Variation of similarity indices, cut-

offs between overall patterns of active and inactive

chemicals, and associated parameter ranges can also

be quantified. More stable patterns are associated with

smaller Euclidean distances, variations in similarity

indices, and corresponding parameter ranges.

The COREPA algorithm circumvents the problems

in existing 3D pharmacophore mapping methods such

as the:

† selection of active conformers (all energetically

reasonable conformers are taken into account);

† predetermination of toxicophores (atomic sites and

fragments with differing levels of generality can be

used in establishing reactivity patterns);

† alignment of conformers to a lead compound

(conformer distributions of chemicals are naturally

ordered across descriptor axis with no necessity to

overlap templates).

3.5. COREPA model decision tree and rule interpreter

The ultimate SAR model was described as a

logistical decision tree. The latter consisted of multiple

hierarchically ordered rules based on parameter ranges

that comprise COREPAs. Boolean logic operators

were used to establish ‘rules’ in the decision tree. If the

value of a parameter calculated for a conformer is

found in a range of the molecular descriptor defined by

a confidence limit with a probability of P%, around the

pattern maximum, then it is assumed that the

conformer meets the specific requirement with a

probability P%. If a chemical had to meet two

successive stereoelectronic requirements to equal or

exceed an activity threshold (with probabilities PA and

PB, respectively), the total probability of meeting both

requirements (PA and B) is obtained as a product of the

probabilities of meeting the two requirements separ-

ately, i.e. PA and B ¼ PA·PB. If the value of the

parameter calculated for a conformer falls outside of at

least one of the parameter ranges, then the overall

probability of having an activity above that specified

threshold is 0. As seen, the approach offered flexibility

in establishing hazard ranking protocols for unknown

compounds based on choices of activity thresholds and

confidence limits around pattern maxima. It must be

stressed that the probability outcomes from the

decision tree should not be viewed in absolute terms.

Rather, the output from the algorithm permits a relative

ranking of unknown chemicals in terms of their

likelihood to have an activity above the user-defined

threshold.

To simplify presentation of the rule interpreter, a

binary version of the decision tree could be used. In

the binary version, a value of 100% was assigned to

chemical if at least one of its conformers fall within

the range of the molecular descriptor defined by a

confidence limit with a probability of P% around the

pattern maximum. This simplified version provided a

discrimination of chemicals as being active or non-

active. Thus, the chemicals with similar binding

affinity have at least one conformer that meets all the

specified parameter ranges, whereas those from
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the other activity ranges should have no conformers

that meet all the multi-parameter requirements

simultaneously. The binary version of the rule

interpreter is usually employed in the COREPA

screening applications.

4. Dynamic techniques applied to toxicity studies

4.1. Selection of active conformers in 3D QSAR

studies

Dynamic QSAR techniques for selection of active

conformers were successfully employed for modeling

the toxicity of unsaturated alcohols [1], semicarba-

zides [4], and a-terthienyls [48]. More recently these

techniques have been applied to development of

QSARs for the aryl hydrocarbon receptor (AhR) [3],

and estrogen receptor (ER) [5] binding of congeneric

chemicals. The results obtained are illustrated below

by presenting the different schemes of deriving QSAR

for AhR binding (log(1/EC50) of 14 polychlorinated

biphenyls (PCBs) [3]. Multiple conformers (103),

optimized by the PM3 Hamiltonian, were generated

for the 14 compounds analyzed. A stacking type of

interaction with AhR was hypothesized and the

receptor affinity of PCBs was hypothesized to be

correlated with the energies of frontier orbitals,

particularly the energy of the lowest unoccupied

molecular orbital (ELUMO). This was chosen as a

relevant molecular descriptor due to the experimental

findings that charge-transfer complexes are obtained

with a charge delocalization toward PCBs. A poor

correlation between AhR binding and ELUMO was

found r2 ¼ 0:38 when all conformers were included

in the correlation sample. It was not significantly

improved (r2 ¼ 0:43; see Fig. 3a) when the most

stable conformers were selected from the confor-

mation sample (occupying 10% of E-level). If the

most planar conformers were selected, however, the

variance r 2 increased significantly, r2 ¼ 0:72 (Fig.

3b). The planarity of conformers was assessed

quantitatively using the planarity index [3] obtained

by a simple (normalized) summation of the dihedral

angles. The conformers with minimum values of

planarity index were specified as most planar.

Similar results were obtained for non-optimized

conformers whose electronic structure was assessed

by single point (1SCF) calculations. The selection of

the most planar conformers yielded again a significant

QSAR model, r2 ¼ 0:78:

It was summarized that the description of the most

planar conformers of PCBs provides a correspon-

dence to the binding data. One could suppose that the

active conformers of PCBs taking part in the AhR

receptor binding are the most planar rather than the

most stable (ground state) ones, which also supports

the experimental fact of charge-transfer complex

formation as well as the hypothesis for a stacking

type of interactions.

4.2. COREPA method for predicting estrogen

receptor binding affinity

Recently, the COREPA approach has been eval-

uated for prediction of ER binding affinity in two

companion papers [14,15].

The COREPA method has been used to develop a

model to predict hERa binding affinity ranges using a

training set of 45 chemicals (26 steroids and 19 non-

steroidal ligands) [14]. Reactivity patterns were

established for identifying and ranking compounds

within a series of RBA ranges, of .150, 100–10, 10–

1, and 1–0.1%. Local, global, and steric descriptors

used in the COREPA model were restricted to those

hypothesized to be associated with ER binding, based

on previous studies with a variety of model receptors

[7,41,42,49–55]. Through the COREPA analysis, the

authors determined that RBA could be predicted

based on three parameters, global nucleophilicity

(represented by energy of the highest occupied

molecular orbital, EHOMO), interatomic distances

between nucleophilic atomic sites, and electron

donor capability of these sites. The reactivity profiles

for one of the three descriptors associated with ER

binding affinity, EHOMO, is illustrated in Fig. 4, where

the pattern of non-active ligands

(0.01 . RBA . 0.00%) (white distribution in Fig.

4a–d) is compared with the pattern of active ligands

of decreasing binding affinity, RBA . 150% (Fig.

4a), 150 . RBA . 10% (Fig. 4b), 10 . RBA . 1%

(Fig. 4c), and 1 . RBA . 0.1% (Fig. 4d). The

EHOMO ranges (in eV), obtained as a function of the

confidence limit [%] around the EHOMO probability

maximum, clearly show a shift in the EHOMO pattern

toward higher global nucleophilicity with increasing
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RBA values. Thus, the lower boundaries of these

ranges 28.82, 29.6, 29.7, and 29.8 eV (one-sided

EHOMO ranges are used in the decision tree)

correspond to the above four activity ranges. This

result is consistent with the hypothesis that more

active ER ligands have higher nucleophilicity [5,53].

The steric and electronic requirements associated

with each RBA range were organized in a

hierarchical decision tree, whose output is an

estimated probability that a conformer would bind

to the hER within a given RBA range (Fig. 5).

Prescreen criteria, based on the necessary structural

requirements for eliciting minimal ER binding

affinity, i.e. RBA $ 0.1% are used to accelerate

the screening. Conformers which have EHOMO

values of less than 210.0 eV, nucleophilic sites

R: C, O, N, Cl, F, and S not meeting the least

conservative charge screen of 20.33 to 20.22 a.u.,

at least one cyclic fragment or steroids

not conforming stereochemical requirements of

Fig. 3. Variation of observed AhR binding affinity versus energy of lowest unoccupied molecular orbitals (ELUMO) for PCBs: (a) lowest energy

conformers; (b) most planar conformers.
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Fig. 4. The reactivity patterns based on EHOMO for active ER ligands: RBA . 150% (a), 10 , RBA , 100% (b), 1 , RBA , 10% (c), and

0.1 , RBA , 1% (d), compared with the pattern for inactive ligands with 0 , RBA , 0.01%; the integral reactivity pattern of active ligands is

in red, whereas the pattern of non-active ligands—in white.
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the natural enantiomer were assigned a 0%

probability to bind to ER with a RBA . 0.01%.

Conformers that passed these absolute requirements

are then compared consecutively to the combined

EHOMO/distance/charge screens associated with

RBA ranges, in decreasing order of activity. If a

compound is identified as belonging to an RBA

range it is not further screened for lower activity

ranges. Thus, the decision reflects a sequential

ordering of the reactivity patterns derived from

different RBA ranges.

Conformers that passed these absolute requirements

were then compared to the EHOMO (28.99 eV ,

EHOMO), interatomic distance (11.77 , d(R –

R) , 12.22), and charge (20.272 , Q(R) ,

20.233) screens associated with the activity pattern

of chemicals having RBA . 150%. The identification

of a ligand with a binding affinity within a RBA range

requires that at least one conformer meets all three

specified parameter ranges. If a compound was not

identified as having an RBA . 150%, it was then

screened to determine if it had an RBA between 10 and

100% (EHOMO (29.44 eV , EHOMO), interatomic

distance (10.62 , d(R – R) , 10.95), and charge

(20.273 , Q(R) , 20.236)), and so on until all

activity range screens are applied.

Recently, much larger and structurally more diverse

training sets were used to extend the COREPA model

for ER binding affinity. For that purpose, data for 242

chemicals evaluated for rER affinity, and another

dataset of about 318 chemicals with ERs from several

mammalian species (human, rat, and mouse) were

collected. As an extension of previous hER models, the

rat and mammalian models have also been expended to

allow predictions to the lower ranges of

RBA ¼ 0.0001 (log RBA ¼ 24) by using two sided

distance rules and widening the range of acceptable

global nucleophilicity, allowing untested chemicals to

be sorted by predicted ER binding affinity into ranges,

or ‘bins’, from .100% RBA to ,0.0001. The same

molecular descriptors were found to be used in the

models, regardless of the size of training set and

bioassays used. The modeling approach has also been

applied to a more homologous series of chemicals

(alkylphenols) with relatively weak binding affinity, to

determine more precise predictors of activity within a

confined range, and, in this instance, for the more

biologically complex endpoint of gene activation [43].

4.3. COREPA method for discrimination of estrogen

receptor antagonists from agonists

The models developed to predict the relative

binding affinity of chemicals to ER can be used for

prioritization for further tiered biological testing to

assess their potential for endocrine disruption. These

Fig. 5. A decision tree for identification of estrogen ligands with RBA values . 0.1%. The decision tree is based on a prescreen followed by a

sequence of rules based on reactivity patterns derived from ligands with RBA values .150%, between 10 and 100%, between 1 and 10% and

between 0.1 and 1%.
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models, however, are not able to distinguish potential

receptor antagonism from agonism, and hence the

type of in vivo response. Recently, the COREPA

approach has also been employed as a discrimination

tool for ER antagonists from agonists [56]. It has been

suggested that steroid receptor antagonists are less

compact than agonists, which eventually prohibits

proper alignment of the former by the receptor protein

helices. As a result of the alignment prohibition the

transactivation process is prevented. The COREPA

model developed a reactivity pattern for ER antagon-

ists and agonists by employing chemical bulk as a

defining parameter of antagonism. A dataset of 23

potent ER ligands (16 agonists, seven antagonists) has

been used. The molecular parameters previously

found to be associated with ER binding affinity,

namely global (EHOMO) and local (donor delocaliz-

abilities and charges) nucleophilicity and steric

distances between nucleophilic sites, were found

insufficient to discriminate ER antagonists from

agonists (Fig. 6). However, parameters related to

molecular bulk, including solvent accessible surface

and negatively charged Van der Waal’s surface,

provided reactivity patterns that were 100% success-

ful in discriminating antagonists from agonists in the

limited data set tested (Fig. 7). The model also shows

potential to discriminate pure antagonists from partial

agonist/antagonist structures. The derived model

could be useful for predicting additional chemicals

for their ability to bind but inactivate the ER,

providing a further tool for hypothesis testing to

elucidate chemical structural characteristics associ-

ated with estrogenicity and anti-estrogenicity.

4.4. Screening of EU chemical inventories for ER

ligands

Models derived to predict ER binding affinity were

preliminarily validated by screening of the EU

chemical inventories for potentially active ER ligands

and subsequent experimental testing of a limited

number of selected chemicals using a series in vitro

and in vivo assays [57,58], including an hERa-

binding assay and a reporter-gene assay (ERE-

CALUX). The EU inventories included 908 chemicals

in a high production volume chemicals (HPVCs)
Fig. 6. Reactivity pattern for ER agonists (white) and ER

antagonists (red) based on EHOMO.

Fig. 7. Reactivity pattern for ER agonists (white) and antagonists

(red) based on the calculated global 3D parameter of Van der

Waal’s partial negative surface area.
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database and 65,232 individual records in a low

production volume chemicals (LPVCs) database. The

numerous chemicals were organized in 3D databases

with quantum-chemically (AM1) optimized geome-

tries and with assessed electronic structure. While the

model was developed using all energetically-reason-

able conformers for each chemical in the training set,

the rapid screening of .65,000 chemicals for ER

binding potential was based on a single optimized

conformer representing each chemical. The ‘directed

tweak’ [24] flexible conformer search algorithm (see

Section 2), was used for conformer selection, to avoid

a possible computational explosion when screening

tens of thousands of chemicals where 10–100

conformers might be generated per chemical. (New

approaches, using a combination of the GA method

for computational coverage (Section 3.1) with the

tweak approach, are currently under investigation for

application to extremely large datasets.) Each chemi-

cal from the databases was processed through the

decision tree by making use of the interpreter that

permits the use of stereoelectronic structure-based

rules based on an extended SMILES notation.

Chemicals predicted to be within a RBA range had

at least one conformer that met parameter ranges

associated with that range, whereas those from the

other RBA ranges had no conformers within par-

ameter requirements.

The screening of the HPVC database predicted

seven chemicals to be active binders, i.e. having ER

binding affinity greater that 1% relative to 17b-

estradiol, with one of these chemicals to have affinity

in the range of 10% , RBA , 100% (bisphenol A

diglicidyl ether, CAS 1675543). In vitro tests were

then done based on these predictions. Eighteen (18)

chemicals were tested in an hERa-binding assay (four

of the seven predicted as active ER binders were

chosen), and 14 chemicals predicted to be inactive (in

this case inactives were those predicted to have ,1%

binding affinity). An ERE-CALUX reporter gene

assay was also used to test 16 of the chemicals

(including the four chemicals predicted active). Out of

the four chemicals predicted to be active

(RBA . 1%), two were found to be weakly estro-

genic in the hERa-binding assays [bisphenol A (CAS

80057); and bisphenol A diglycidyl (CAS 1675543)]

and two were found active, i.e. activated the reporter

gene, in the ERE-CALUX assay [bisphenol A (CAS

80057); and 2,20-dithiodibenzoic acid (CAS 119802)].

Fourteen chemicals predicted to be inactive by the

QSAR model (i.e. have RBA , 1%) were also found

to be inactive in the hERa-binding assay; and among

these, 13 chemicals were also identified as non-active

in the ERE-CALUX assay.

The above screening predictions did not indicate

any highly potent ER ligands (with RBA . 150% of

17b-estradiol) among HPV chemicals. In an attempt

to test the predictions of higher potency, the LPVC

inventory was screened for predicted higher ER

binding potency (RBA . 10%). An additional exper-

imental validation was undertaken in which 10

chemicals predicted by the QSAR model to be have

RBA . 10% were selected from a list of 200. The 10

chemicals were testing in the ERE-CALUX and

hERa-binding assays. The results showed that ERE-

CALUX and hERa-binding assays validated QSAR

predictions with no outliers (false negatives or false

positives), i.e. all 10 chemicals were found to bind to

the ER and turn on gene expression. Moreover, these

tests confirmed identification of some extremely

active ER ligands, such as meso-3,4-bis(4-hydroxy-

phenyl)hexane (CAS 84162) 3,4-bis-(4-acetoxyphe-

nyl)-2,4-hexadiene (CAS 84195), and fenoterol

hydrobromide (CAS 1944123), which appear to be

more potent than estradiol, according to theoretical

(QSAR) and experimental data. The results from

ERE-CALUX and hERa-binding assays were con-

firmed by additional in vitro assays. For more details

on this QSAR screening and validation exercise refer

to Ref. [58].

5. Conclusions

The principle difficulties in developing mechan-

istically sound SARs for receptor-mediated events in

toxicology, with application to additional mechan-

isms, are discussed. Development of such models

requires one to account for the 3D character of the

interaction causing the toxic event as well as

the selection of active conformations to represent

the chemical in SAR models. Techniques we have

recently developed to address these issues were

reviewed in the present work. The approaches taken

follow the basic assumption that chemical behavior in

complex biological systems is context-dependent.
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A molecule can exist and interact in a variety of

conformations, with solvation and binding inter-

actions capable of compensating for energy differ-

ences among the conformers. It was shown that

selection of active conformers in QSAR studies is as

important as the selection of appropriate molecular

descriptors because the conformers of same chemicals

differ significantly in their descriptor values.

In the approach for selection of active conformers

in QSAR studies, biological activity is modeled as a

function of molecular descriptors derived from

specifically selected active conformers, rather than

as a property derived from the lowest-energy gas-

phase conformer. In a recent pattern-recognition

approach the COREPA of structurally dissimilar

chemicals acting via the same mechanism of action

is determined. This is based on the assumption that

chemicals, which elicit similar biological behavior

through a common mechanism should possess a

commonality in their stereoelectronic (reactivity)

pattern. Elucidation of this pattern requires examin-

ation of the conformational flexibility of the com-

pounds to allow evaluation of molecular similarity in

the context of specific interaction.

Applicability of both techniques were illustrated

by presenting QSAR models derived for Ah

binding affinity of PCBs and ER binding affinity

of structurally diverse chemicals. COREPA models

were found to be promising in 3D screening of

large chemical inventories, as demonstrated by

experimental validation within the EDAEP project.

Besides the impact of conformational flexibility of

chemicals in QSAR the role of different molecular

descriptors is discussed. In this respect, a classifi-

cation of descriptors according to their ability to

describe molecular interaction is suggested. This

classification could be useful as guidance for selection

of appropriate molecular parameters for modeling

different toxic endpoints according to specificity of

the underlying interactions.
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